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ABSTRACT 

KEY WORDS: numerical wave tank, nonlinear waves, finite element method, 

velocity calculation method, mesh moving strategies, solitary and 

cnoidal waves, continental shelf, vertical wall, submerged bar, PIV 

measurement, wavelet transformation, numerical wave absorber, 

sloshing. 

The estimation of forces and responses due to the nonlinearities in ocean waves is 

vital in the design of offshore structures, as these would result in the extreme loads. 

Simulation of such events in a laboratory is quite laborious. Even for the preparation 

of the driving signals for the wave paddle, one needs to resort to mathematical 

models. In order to achieve this task, numerical tool plays a major role. The time 

domain simulation of nonlinear waves has received considerable attention, in which a 

mixed Eulerian and Lagrangian (MEL) formulation has been solved using Finite 

Element Method (Wu and Eatock Taylor, 1994). Most of the conventional methods 

need the free surface to be smoothed or regridded at a particular/every time step of the 

simulation due to Lagrangian characteristics of motion even for a short time. This 

would introduce numerical diffusion of energy in the system. In order to minimize 

this effect, the present study aims at fitting the free surface using a cubic spline 

approximation with a Finite Element approach for discretising the domain.  

The validation of the simulations in the past studies has been evaluated based on 

qualitative analysis or the relative errors. However, none of them, in fact, reveal the 

existence of phase difference if any, between the numerical simulation and laboratory 

generation of nonlinear waves. In this present study, the simulation of nonlinear 

waves by applying existing velocity calculation methods viz., global projection, 

mapped finite difference, least squares and the proposed cubic spline method has been 

compared with the experimental measurements. The wavelet analysis has been carried 
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out, which gives a better understanding between the numerical and the experimental 

results with respect to the time-frequency space, compared to the conventional Fourier 

transformation. The analyses of the simulated regular and cnoidal waves reveal that 

least squares and cubic spline give identical results and the application of cubic spline 

approach leads to a higher phase difference for steeper waves. The present study has 

shown that the existence of the phase difference is not found at the primary wave 

period under consideration but at a higher mode. In addition, the comparison of 

kinematics of numerical simulation of solitary waves with that from PIV 

measurements is reported. The developed model has also been compared with the 

experimental measurements carried out in three different wave tanks (namely, 

IITMadras, India; University of Hannover, Germany and University of Wuppertal, 

Germany). 

The developed model based on structured mesh has been extended to accommodate 

unstructured mesh in order to deal wave interaction with complex objects (like, 

cylinders, floating bodies). An efficient mesh moving method has been adopted for 

the regeneration of unstructured mesh at every time step. Since this method is similar 

to Arbitary Lagrangian and Eulerian approach, it is called as Semi-Arbitary 

Lagrangian and Eulerian (SALE/Semi-ALE) method. The spring analogy concept is 

used to move the mesh at every time step. The adoption of improved segment method 

as well as the improved vertex method of the spring analogy leads to accurate results, 

provided the spring stiffness is taken care off contrary to the results reported by 

Sudharsen et al. (2001). 

On the application of the present numerical model to investigate the interactions with 

the submerged obstacles, it is found that by using cubic spline the dispersive 

characteristics are not predicted well compared to the experimental measurements for 
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very steep waves. The phenomenon of three wave split-up of solitary wave during its 

propagation over an uneven bottom topography is successfully established. Wave 

transmission and reflection over a vertical step introduced in the bottom topography 

are in good agreement with the experimental results from Seabra-Santos et al. (1987). 

The interaction of the solitary wave with a vertical wall for different wave steepness 

has been analysed. The reflected shape of the profile is in good agreement with the 

observation made by Fenton and Rienecker (1982) and an increase in wave celerity is 

observed. 

The motion of sloshing waves under random excitation in the sway and heave modes 

has also been simulated using the present model. The sloshing due to the simulated 

random excitation with different peak frequencies relative to the natural sloshing 

frequency has been subjected to frequency domain analysis. The results showed that 

irrespective of peak excitation frequency, the spectral peaks appear at the natural 

frequencies of the system and the maximum magnitude appears close to the natural 

frequency for the sway excitation. In the case of heave excitation, even though, the 

maximum sloshing appear at the natural frequencies, the magnitude of the spectral 

peak remains same for different excitation frequency.  

Finally, the developed algorithms are extended to three-dimensional tank, wherein, an 

efficient combined wave absorber having mixed boundary conditions and damping 

zone along with grid stretching is introduced to dampen the highly nonlinear waves. 

The details of the background on the numerical modelling with detailed procedures on 

velocity calculation methods including new algorithms, comparison of the simulation 

with experiments and the applicability of the formulation are presented in this thesis. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Different environmental loads that impart on the marine structures are due to wind, 

waves, currents, earthquake and ice. Of these, the hydrodynamic loads due to wind waves 

are the most important that induces cyclic loading that may lead to fatigue type of failure 

of structures if not properly incorporated in their design. With the advancement in the 

development of ocean wave modelling and remote sensors, the information on ocean 

waves are abundantly available these days. However, it is necessary to get the reliable 

information about the behaviour of loadings on the offshore systems due to ocean waves. 

The ocean surface propagates enormous amount of energy in the form of waves, tsunami, 

seiche and other types of waves. The relative energies of these waves differ from each 

other as they are formed by different disturbing forces acting over the sea surface. Ocean 

surface waves are generally classified based on the disturbing forces, restoring forces and 

their period. The amount of energy that is possessed by each type of waves on the ocean 

surface with respect to the period of wave is illustrated in Fig. 1.1. Among all the types of 

waves, the wind generated ocean waves dominate in terms of the total relative energy and 

are of great concern to engineers/scientists/planners. The wave form moves forward with 

a significant amount of energy from its origin, the properties of which keep varying. 

Based on the ratio of water depth (h) and wave length (λ), the wind waves are classified 

as deep water (h/λ>0.5), intermediate water (0.05<h/λ<0.5) and shallow water (h/λ<0.05) 

waves. Cnoidal and solitary waves fall in the category of shallow water waves. The 
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profiles of different types of waves discussed above are shown in Fig. 1.2. Thus, under-

prediction of the ocean wave information will lead to failure of the structure and the over 

prediction may give rise to uneconomical design. 

1.2  IMPORTANCE OF OCEAN WAVES 

Waves generated by wind or storm travel from the deep ocean towards the shore during 

which wave deforms (refraction, diffraction, reflection and shoaling). An offshore 

structure in deep sea experiences the extreme wave action and strong wave-wave 

interaction, while a coastal structure in the shallower region experiences loading due to 

the deformed waves due to refraction or diffraction or a combination of both. In either of 

the above cases, the waves behave as a nonlinear, highly dispersive and transient in 

nature. A typical photo of an extreme wave event that occurred at Gulf Stream, 

Charleston is shown in Fig. 1.3. Such a huge wave causes high impact loads on the ship 

and induces instability to the ship motion if not properly considered in the design. For 

example, the case of an oil cargo ship, sloshing in the container due to the ship motions 

may impart higher forces on the tank walls, which eventually lead to its capsizing.  

The physical and numerical modeling of nonlinearity, particularly in extreme waves or 

shallow water waves are the important field of research for the design of the marine 

structures. Thus, the contribution to the analysis and the design of many complex 

structures and the nonlinear engineering problems such as slamming, ringing, ship 

stability phenomenon is to simulate and investigate these highly nonlinear waves that 

exist in nature. 
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1.3  PRESENT STUDY 

Studies on the behaviour of waves and wave structure interaction problems in the marine 

environment have been topics of great interest over the past few decades with an increase 

in the necessity for exploration and exploitation of the ocean resources. Prior to the 

construction of marine structures, their performance needs to be evaluated either through 

numerical simulation or through physical model tests. Till early eighties, emphasis has 

been in understanding the behavior of marine structures more through physical model 

tests that require large hydrodynamic testing facilities with well controlled wave 

generation system. Due to the rapid progress in the computational power over the last two 

decades, numerical simulations of hydrodynamic process through the development of 

Numerical Wave Tank (NWT) have become increasingly important. NWT has the 

flexibility of reproducing several scenarios of predefined wave characteristics and their 

interaction with structures within hours or minutes, which, otherwise in the case of 

physical model tests might take several days or even months. 

1.4  APPLICATIONS OF THE PRESENT WORK 

The rapid increase in the marine applications, the real accurate prediction of 

hydrodynamic loads has become increasingly important for the design. For example, to 

minimize the wave energy transmission, a submerged trapezoidal structure or a 

submerged breakwater is often deployed in coastal areas. The presence of such structures 

is felt by the wave while propagating over them due to which the waves get deformed, 

with a significant nonlinear energy transfer among different wave frequencies. 

The coastal structures that experience nonlinear wave interaction are usually studied 

using the shallow water theory. One such wave is the solitary waves, the interaction of 
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which on structures in general and in particular, on porous breakwaters or seawall has 

been a topic in which researchers have been focusing their attention. The solitary wave 

can also be approximated to the characteristics of a tsunami. Due to the recent Indian 

Ocean tsunami 2004, this topic has become much more important particularly in 

addressing the run-up on the sloping beaches due to steep shallow water waves including 

that of a tsunami/solitary waves. An important component of tsunami disaster prevention 

measure is to understand how a tsunami propagates from the deep to shallow waters. 

Since field observations of tsunamis are difficult to quantify except at the coast, the 

experimental and numerical investigation are becoming more important. Thus, the 

nonlinear wave simulation has the flexibility to reproduce the wave characteristics that 

exhibit in the deep water and shallow water as close as possible. 

Apart from NWT, the need for numerical modelling arises due to the significant 

importance of the higher order effects due to sloshing waves which are nonlinear in 

which case, neither the linear nor the second order potential considerations are enough to 

simulate steep waves. This will be useful in various engineering problems like earthquake 

excitation on the liquid tank, spacecraft and the liquid cargo ship container.  

1.5 ORGANISATION OF THE THESIS 

Chapter 1 gives a brief introduction to the different types of ocean waves, the 

importance of the understanding the nonlinear waves and the need for the numerical 

modeling of such waves and their interaction with structures. 

Chapter 2 details the review of the literature related to the present study showing the 

various numerical approaches for the simulation of nonlinear waves with an emphasis on 

the simulation using Finite Element Method on which the present study is based on. Past 
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numerical works and the approaches used by different investigators are briefed. The 

literature related to wave propagation, solitary wave interaction with structures, sloshing 

phenomenon along with the motivation for the present study are highlighted. 

Chapter 3 explains the numerical modeling to simulate the nonlinear free surface waves. 

The finite element formulation and the different velocity calculation methods are 

projected along with the proposed velocity calculation method. The procedures involved 

in implementing unstructured mesh to the developed model based on structured mesh are 

described. Dynamic mesh moving strategies are discussed briefly in the context of 

nonlinear wave structure interaction.  

Chapter 4 deals with the efficacies of the different velocity calculation methods on the 

simulation of nonlinear waves from small to high steep waves. The different velocity 

calculation methods have been validated with measurements at IITMadras, India, 

University of Wuppertal and University of Hannover, Germany. Further, quantitative 

comparisons are reported for the difference in wave phase speed between numerical and 

experiments by adopting wavelet transformation. 

Chapter 5 presents the typical applications of the developed model to the wave 

interaction with submerged bar, surface-piercing object and a submerged cylinder near 

the free surface. The solitary wave interaction with the continental shelf and a vertical 

wall are explored in detail. This chapter also shows an insight into the physical behavior 

of the sloshing waves when a container undergoes regular excitation and how the 

sloshing behaviour changes due to the random excitation. The spectral analyses for the 

different excitation modes are presented and discussed. 
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Chapter 6 depicts the development of three dimensional numerical wave tank. The 

mathematical formulation and studies on the mesh orientation are projected. The 

implementation of an efficient wave absorber described with mixed boundary conditions 

and damping zone along with the grid stretching techniques are put forth for long time 

wave simulation. 

Chapter 7 summarises the present study and the salient conclusions drawn from the 

study are highlighted. 

1.6  SUMMARY 

The application of the nonlinear waves is wide. This is quite useful in obtaining reliable 

information about the type of loading that exert on the offshore or coastal structures. The 

simulation of very steep waves and its interaction with the structures has received 

considerable attention by researchers. Although important contribution on the subject of 

the nonlinear waves has been made over the last two decades, work on fully nonlinear 

numerical simulation and the various associated problems pose many challenges for the 

researchers even today. In order to address these problems, the present study deals with 

the development a numerical model, its validation and its application to field problems. 

The details of the organization of this thesis have been discussed in this chapter. 
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Fig. 1.1 The Relative Amount of Energy Available in the Ocean Surface 

 

 

 

 

 

 

Fig. 1.2 A Physical Illustration of Various Wave Profiles  

Airy waves: small wave steepness 

Stokes waves: large wave steepness 

(a) Deep water waves 

Cnoidal wave 

Solitary wave 

(b) Shallow water waves 

(Source : Kinsman, 1965) 

(Source : Chakrabarti, 1987) 
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Fig. 1.2 Contd. 

 

 

         

 

Fig. 1.3 Extreme Nonlinear Waves Noticed in the Deep Water at Gulf Stream, 
Charleston 

  

(c) Wave groups 

(Source : Chakrabarti, 1987) 

(Source: http:\\ www. underwatertimes.com) 



CHAPTER 2 

REVIEW OF LITERATURE 

2.1. GENERAL 

The understanding on the studies in past on the steep waves are highly nonlinear waves 

of transient nature. The interaction of steep waves with the marine structure and 

kinematics of such waves is absolutely essential. For over the past three decades, the 

simulation of nonlinear waves and their interactions have been studied through the 

physical, analytical and numerical models. Although physical modelling replicates the 

phenomenon of steep waves accurately, it is quite tedious. Hence, researchers focused on 

the theoretical tools. The exact solution from the analytical model is possible with ease 

for definite domain shape and linearised boundary conditions. It is appreciable to solve 

the analytical model for the interaction of steep waves with simple geometries like 

vertical, horizontal cylinders but is difficult to derive for the irregular geometries and 

moving objects. In the case of numerical simulation, the domain equations can be 

approximated with the prescribed boundary conditions for any complex shape including 

moving boundaries. Each of the existing modelling approaches has its own merits and 

demerits and hence each approach depends upon the problem under consideration. This 

chapter focuses on the different numerical techniques. 

2.2. MATHEMATICAL MODEL 

For the simulation of free surface flows, various numerical techniques are available. The 

review on the free surface flows applied in the field of ocean engineering by Yeung 
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(1982), Schwartz and Fenton (1982), Tsai and Yue (1996), Scardovelli and Zaleski 

(1999) will provide a clear picture of the different numerical modelling techniques with 

the advantages and disadvantages of each of the methods. The reviews of the different 

techniques are given below. 

2.2.1. Numerical Grid 

One of the important criteria that govern the accuracy of the numerical solution is the 

adopted meshing strategy. The literature review of mathematical model based on the 

numerical grid is classified as follows, 

Fixed mesh: The method based on fixed mesh is also called as surface capturing 

technique. It is classified under two types, 

a.  Marker methods, where the free surface markers are used to capture the interface 

at the fixed mesh. These marker particles are used to locate the phases. This 

surface marker method was used by Unverdi and Tryggvason (1992). A modified 

marker and cell algorithm based on finite difference scheme has been developed 

to investigate the interactions of fully nonlinear waves with the two or three 

dimensional arbitrary structure by Park et al. (2003). 

b. Volume of fluid (VOF) solves the problem of updating the volume fraction field 

‘D’ given the fixed mesh, the velocity field ‘u’, and the field ‘d’ at the previous 

step. In two dimensions, the interface is considered to be continuous, piecewise 

smooth line. The problem of its reconstruction is that of finding an approximation 

to the section of the interface in each cut cell, by knowing only the volume 

fraction ‘D’ in that cell and in the neighbouring cells. The simplest method is 

SOLA-VOF is that of Hirt and Nichols (1981). Clauss and Habel (2000) used the 
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commercial package StarCD to study the interaction with the artificial reefs for 

coastal protection. Clauss et al. (2004) used FLUENT to simulate the highly 

nonlinear transient waves and has shown good comparison with laboratory data. 

The free surface has been tracked via VOF on solving the Reynolds average 

Navier-Stokes equation. 

Meshfree method: Meshfree or grid free methods are formed due to the problems caused 

by fixed or moving grids, in part or in complete. It has been adopted in the Boundary 

integral method (BIM) and Particle in cell (PIC) method (Harlow, 1964). Coupling of 

these two methods has been popular these days. The smoothed particle hydrodynamics 

(SPH) proposed by Monaghan (1992) was based on this coupling, where it uses the 

particles and smoothing kernels to define the intensity of interactions between particles, 

depending on their mutual distance. This method was applied for the simulation of 

breaking waves by Fontaine et al. (2000). More recently, another type of meshfree 

method, Meshless Local Petrov Galerkin method (MLPG) has been successfully adopted 

in the field of structural mechanics by Atluri and Zhu (1998). This method was based on 

the local weak form over local sub-domain (circles for 2-D and spheres for 3-D), which is 

a modified form of Finite Element method (FEM). Recently, this method has been 

applied to the nonlinear free surface waves by Ma (2005) to study the interaction of steep 

waves with a floating body. This strategy has been adopted to overcome the difficulty in 

the generation of mesh while using FEM. 

 Moving mesh and adaptive mesh method: In these methods, the free surface grid is 

allowed to move during the simulation. The fluid domain is solved in an Eulerian 

framework and the structure boundary/free surface movements are carried out in the 
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Lagrangian framework. When the movement of the grid nodes is taken care by the 

solution itself then it is called as Arbitrary Lagrangian and Eulerian Method (ALE) first 

introduced by Hirt et al. (1974). The detailed formulation and its application to 

simulation of nonlinear waves is given by Nitikitpaiboon and Bathe (1993). Ramaswamy 

and Kawahara (1985) proposed a Lagrangian FEM for the simulation of nonlinear 

viscous waves. When the movement of the mesh is not implemented in the Lagrangian 

framework but only the new free surface grid position is evaluated, then, the formulation 

is called Mixed Eulerian and Lagrangian scheme (MEL) as proposed by Longuet–

Higgins and Cokelet (1976). Later, several investigators have been following this 

procedure for the simulation of nonlinear waves. It has been used to study a wide variety 

of problems, like forces due to breaking and extreme waves on submerged and surface 

piercing bodies (Vinje and Brevig, 1981) and interaction of steep waves with floating 

bodies (Sen, 1993; Maiti, 1999; Contento, 2000; Wu and Hu, 2004; Koo, 2005). 

The methods based on meshfree and moving mesh methods are called as surface tracking 

method. In this thesis, focus is based on the surface tracking method with the inviscid 

flow. The reason being the principle interest is on the calculation of particle velocity and 

the free surface movement of only non breaking waves. Hence, literature based on the 

MEL approach considering the flow as inviscid is reviewed. 

2.2.2. Mixed Eulerian and Lagrangian Method 

The methodology introduced by Longuet-Higgins and Cokelet (1976) has been widely 

used by several researchers for the simulation of nonlinear waves, implementing various 

tools such as, BEM (Ohyama, 1991; Sen and Maiti, 1996) higher order BEM (Grilli et al. 

1989; Boo, 2002), FEM (Cai et al. 1997; Clauss and Steinhagen, 1999; Ma et al. 2001a; 
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Bai and Kim, 2005; Washizu, 1982) and hp spectral FEM (Robertson and Sherwin, 

1999). In order to minimize the need for smoothing/regridding on the free surface and 

remeshing on the domain, the transformation from physical to computational domain 

(mapping to rectangular grid) has been investigated. In FEM, this has been implemented 

by Turnbull et al. (2003a) and Chern et al. (1999), whereas, in Finite difference method 

notable works are that of Yeung and Vaidhyanathan (1992) and Frandsen (2004). 

Steinhagen (2001) adopted FEM for evaluating velocity potential and mapping approach 

for estimating velocity. But the disadvantages in the mapping methods is that overturning 

waves (breaking) and run-up on the slopes were not possible, where the solution becomes 

unique to this condition. Most of the methods (other than transformation) needs 

smoothing or regridding even for steepness (H/λ, where H is the wave height and λ is the 

wave length) of about 0.05 except the Spline-Boundary Integral Element method (BIEM) 

proposed by Maiti (1999).  

2.2.3. Finite Element based MEL 

In BEM, the potential and the derivatives on the boundary are approximated 

independently, usually by the same set of shape functions. Since no differentiation of the 

shape function is required for the representation of derivatives, the approximation of the 

derivatives and velocity potential is of the same order. However, in FEM, the derivatives 

are usually found from differentiating the shape function, which is the direct 

differentiation of the velocity potential. This induces further approximation in the 

velocity field than the approximation of potential. In time-dependent problems, this plays 

an important role. To overcome the induced discrepancy, Wu and Eatock Taylor (1994) 

solved a fully nonlinear wave problem based on the potential flow formulation by 
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considering either the velocity potential as an unknown (FEM) or both velocity potential 

and velocity as unknowns [Mixed Finite element method (MFEM)]. The advantages and 

accuracy of both the methods were compared and it was suggested that the MFEM was 

less accurate and takes larger computational time. A five point smoothing technique (as 

introduced by Longuet-Higgins and Cokelet, 1976) was applied at every time step for the 

simulation of the waves, in order to rectify the mesh instabilities. Westhuis (2001) 

adopted a polynomial function for the calculation of the velocity in which, a correction 

vector to the final velocity was adopted in order to minimise the drawback in the 

calculations using the global projection method (Wu and Eatock Taylor, 1994). The 

global projection (GP) method corresponds to re-sampling the velocity at the Gauss –

Lagrange integration points, from which, a more accurate approximation to the velocity 

field can be obtained compared to the direct differentiation of velocity potential 

representations. Westhuis (2001) showed the inaccuracy of the GP by a linear stability 

analysis. A number of techniques (Steinhagen, 2001, Ma et al. 2001a, Turnbull et al. 

2003b) address the main drawback for handling the simulation of nonlinear waves using 

FEM which is due to inaccurate calculation of velocity. In the case of unstructured mesh, 

Wang and Wu (2006) used the global projection method for tackling non-wall-sided  

boundaries but the unstructured mesh was regenerated at every time step requiring a 

higher computational cost. Other possible approach is the mesh movement strategy which 

is being widely used in the field of aerodynamics. In free surface simulation, this strategy 

has been adopted by Sudarsen et al. (2004) and Ma and Yan (2006). Though, the 

approach remains the same, the later named it as Quasi-ALE. Wu and Eatock Taylor 

(1995) showed that the FEM is advantageous over the BEM in the generation of fully 

nonlinear waves in terms of its computational efficiency and in its accuracy in the 
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simulation. Kim et al. (1999) reviewed the research and development in the simulation of 

nonlinear waves in regard to numerical implementations, methods of wave generation 

and absorption. The review paper focused mainly on BEM and no review paper on the 

progress of FEM in simulating nonlinear free surface waves is available. The progress of 

the FEM based potential flow formulation suggested by Wu and Eatock Taylor (1994) 

has been extended dramatically till date. The flow chart of the chronological progress in 

nonlinear wave simulation is given in Fig. 2.1. In the above chart, only research work 

with significant contribution to the wave simulation is quoted.  

In the case of the 3-D simulation, the literature available is limited due to the 

computational intensive simulation (all available methods) and complexity of meshing 

(FEM). In BEM, the valuable contributions were made by Ferrant (1996), Grilli et al. 

(2008) and Romate (1992). Ma et al. (2001a) used FEM with a simple mesh generation 

routine to study the interaction of steep waves with the single and twin cylinders. Wu and 

Hu (2004) extended the above work by adopting hybrid mesh to study the wave 

interaction with a floating body. Recently, Wang and Wu (2007) used an unstructured 

mesh on the free surface and structured configuration across the depth to study the second 

order wave effects on the array of cylinders. Ma and Yan (2006) implemented 

unstructured mesh wherein, the mesh was moved at every time step based on spring 

analogy for floating body applications respectively. 

2.3. WAVE PROPAGATION 

The nonlinearity plays a major role when the extreme wave interact with the offshore 

structures in the deeper waters, whereas, in the near shore, the nonlinearity is due to the 

changes in the bathymetry, and hence, in the design of coastal structures. The wave 
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decomposition over a submerged reef or bar has been a topic of great interest over the 

past few decades ever since, the field investigation of Johnson et al. (1951). The waves in 

shallow waters are found to be cnoidal in nature and two to eight cnoidal waves among 

six wave packets were observed by Osborne (1994). Researchers carried out these steep 

wave interactions with the coastal structures through experimental investigation (Dattatri 

et al. 1978; Rey et al. 1992; Beji and Battjes, 1993; Ohyama and Nadaoka, 1994) and 

through field observations by Byrne (1969) and Young (1989). It is of great importance 

for prediction of coastal wave fields and beach profile formation (Hulsbergen, 1974). 

Three different approaches are adopted for the above said problem on wave propagation 

over a submerged bar. The first approach is the inclusion of non-conservative wave fields 

composed of multiple-frequency components both in shallow and deep water by 

modelling the wave dispersion accurately. This has been done by using Boussinesq-type 

equations (Peregrine, 1967), which has been commonly used in the analyses of nonlinear 

wave propagation in shallow waters. Notable contributions to this problem are that due to 

Abbott et al. (1978), Freilich and Guza (1984), Liu et al. (1985) and Seabra- Santos et al. 

(1987). However, since the conventional Boussinesq equation relies on assumptions of 

weak nonlinearity and weak dispersive of wave fields, this approach have the limitation 

in deep and shallow waters. In the case of deep waters, it is not applicable for the 

predictions of free higher harmonics, whereas, in shallow water waves its applicability to 

highly nonlinear interaction between bound and free waves are questionable. Attempts 

have been made to improve the dispersion characteristics of the Boussinesq- type 

equation (Madsen et al. 1991; Madsen and Sorensen, 1992; Nwogu, 1993, Beji and 

Battjes, 1994, Madsen et al. 2002, Lynett and Liu, 2004). Recently, Madsen et al. (2006) 

presented the most accurate Boussinesq type formulations capable of treating highly 
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nonlinear waves characterized by kh = 25 and kinematic velocity for kh = 12 (where k is 

the wavenumber and h is the water depth) to model a rapidly varying bottom. 

The second approach is to incorporate the strong effects of wave nonlinearity that result 

from the increased ratio of wave height to water depth over the shelf or a bar. For this, 

Stokes type expansions of the velocity potential and free surface displacement are 

considered. The second order approximations for this wave decomposition by 

considering the phenomenon of incident periodic wave trains are given by Massel (1983) 

and Kojima et al. (1990). The limitations of this model arise from the applicability of the 

second order Stokes wave theory, to submergence of shelf in deep water and the 

evolution of random waves composed of multiple-frequency components. 

The third approach is to reproduce the experimental facility numerically by considering 

the fully nonlinear waves along with the arbitary nature of the bottom topography. 

Ohyama et al. (1995) compared the capability of Boussinesq- type equation, Stokes 

theory and fully nonlinear model based on BEM for the wave propagation over a 

submerged bar for different Ursell parameter (Ur = Hλ2/h3). The fully nonlinear model 

was found to be in good agreement with the experimental measurements than the other 

two types of modeling.  

2.4. SHALLOW WATER WAVES 

Simulation of the nonlinear shallow water waves is essential for studying the interaction 

of waves with marine structures. In theoretical wave mechanics, the solitary and cnoidal 

waves are called as shallow water waves, which are nonlinear to the first degree of 

approximation. Goring (1979) carried out study on the long wave propagation over the 
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continental shelf, in which pioneering works on the efficient experimental generation 

mechanism of solitary and cnoidal waves were put forth, which overcomes the 

difficulties in the generation of highly nonlinear waves in the flume. Solitary waves or a 

combination of negative and positive solitons have a single crest/ trough and of infinite 

wave length. When compared to typical ocean waves, the solitary waves are highly 

nonlinear and exhibit translatory motion, it also posses a unique relationship between the 

wave nonlinearity and wave steepness. The wave steepness is usually represented as H/h. 

and hence in solitary wave-structure interaction problem, the influential parameter can be 

reduced to one, namely wave steepness. It is important for the coastal engineers to study 

the propagation of the solitary wave when it travels from deep water to shallow water in 

order to understand its behavior. The understanding of solitary wave run-up and breaking 

has received attention in numerous analytical, numerical and experimental studies. The 

experimental studies on the solitary or cnoidal waves are limited due to the requirement 

of large paddle stroke in generating these waves. Grilli et al. (1994) studied the solitary 

wave breaking through experimental simulation as well as using 2-D NWT based on 

BEM. Sen and Maiti (1996) reproduced the same simulation with improved BIEM based 

on splines. The solitary wave interaction with the vertical wall has been studied in the 

laboratory by Maxworthy (1976). The analytical modelling (Byatt-Smith, 1971 and Su 

and Mirie, 1980) and numerical simulation (Chan and Street, 1970; Fenton and 

Rienecker, 1982 and Maiti, 1999) have added to the understanding on solitary wave 

interaction with a vertical wall. Studies have been carried out on the interaction of 

solitary wave with submerged rectangular obstacles (Tang and Cheng, 1998; Cheng et al. 

2001; Lin, 2004). Lin (2004) quoted that the wave breaking and vortex evolution should 
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be incorporated in the numerical model for proper understanding of wave transformation 

over a submerged obstacle.  

The solitary wave propagation over an uneven topography has been dealt numerically and 

analytically by Grimshaw (1970) and Johnson (1973) and its disintegration into two or 

more solitons over varying depth has been studied using Korteweg-de Vries (KdV) type 

equation (Pudjaprasetya et al.1999) and fully nonlinear models based on BEM (Van 

Daalen et al. 1997). The analytical studies for the transformation of a solitary wave over 

a shelf was also dealt by Miles (1979), Germain (1984), Kabbaj (1985) and Sugimoto et 

al.(1987), in which the only characterizing parameter is the relative obstacle height (b/h, 

where b is the obstacle height). Seabra-Santos et al. (1987) conducted the experiments to 

investigate the wave transformation over a shelf and a submerged triangular obstacle. In 

wave transformation, both nonlinearity and dispersion play an important role as pointed 

out by Goring and Raichlen (1992) for solitary waves as well as by Bejji and Battjes 

(1994) for regular waves.  

Recently, Raichlen (2008) in his technical note on dealing with nonlinear waves, showed 

analytically that the linear waves can be scaled down to model scale and one can easily 

establish the obtained results to the field condition, whereas, linear establishment is not 

possible when one deals with nonlinear waves. This has been explained for the solitary 

wave propagation over continental shelf by making use of the results reported by Goring 

(1979). Hence, a suggestion has been put forth to study the effect of the nonlinear waves 

in two different model scale and by establishing the transfer function, one can relate it to 

the field condition.  
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Tsunamis that are basically shallow water waves undergo deformation due to the 

nearshore topography by reducing its speed resulting in an increase in wave height during 

their propagation. These waves travel inland over a large distance with considerable 

amount of energy that leads to property damage and loss of life. Therefore, an important 

aspect of any mitigation effort is to predict the entire scenario. Murty (1979) has shown 

that the energy released by the moving land mass by an earthquake can be modeled as a 

solitary wave.  

2.5. SIMULATION OF SLOSHING WAVES 

The phenomenon of sloshing still needs considerable exploration in the application of 

various engineering problems. These are highly nonlinear waves that may lead to 

structural damage of the sidewalls of the tank and/or destabilize the ship. Numerous 

studies have been carried out in understanding sloshing waves using analytical, 

experimental and numerical approaches. These include studies in 2-D and 3-D. In the 

case of 2-D, Faltinsen (1974,1978) derived the analytical solution of sloshing waves for 

sway and roll/pitch excitations using the perturbation approach; Okamota and Kawahara 

(1990) and Armenio and La Rocca (1996) compared the results of numerical and 

experimental data; Nakayama and Washizu (1980) adopted a numerical approach for the 

forced pitching oscillation of the liquid tank; and Frandsen (2004) analyzed the sloshing 

oscillation in the vertical, horizontal and combined motions of the tank using analytical 

and numerical approaches. For the case of 3-D, Wu et al. (1998) numerically simulated 

the sloshing waves and Huang and Hsiung (1996) used the shallow water equation for the 

flow on the ship deck. Recently, Faltinsen et al. (2005) performed the experimental 

investigation in a 3-D tank.  
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The waves generated by the vertical excitation are called as Faraday waves. These waves 

were originally explored in an experimental study by Faraday (1831). Faraday waves are 

the resonant waves that are generated when the vertical excitation frequency is twice that 

of the natural frequency in the presence of initial perturbation in the container. This 

resonance condition is called as parametric resonance. Because of the requirement of 

initial perturbation in the free surface, it is difficult to carry out experiments only with the 

vertical excitation. To have an initial perturbation in the free surface inside the container, 

horizontal motion needs to be excited before the vertical excitation. A detailed review on 

sloshing of Faraday waves has been reported by Miles and Henderson (1990). 

Experiments have been carried out with the Faraday waves by Jaing et al. (1996) and 

Bredmose et al. (2003). There has been considerable amount of work carried out based 

on the horizontal excitation. The focus of many of the studies was on the earthquake 

induced sloshing. Ibrahim et al. (2001) presented a comprehensive review of more than 

one-thousand articles in the prediction of sloshing oscillation. 

Most of the studies related to sloshing waves are based on the regular excitation of the 

container. This is quite useful in understanding the physical phenomenon of sloshing 

waves. However, in real field situation, the excitation is not regular but random in nature. 

Wang and Khoo (2005) analyzed for horizontal random excitation. Nasar et al. (2008) 

studied the sloshing harmonics present in the nonlinear system subjected to coupled 

dynamics of floating body and liquid on board. The study revealed the interesting 

phenomena such as inter-modal resonances, bore phenomena, nonlinear response of the 

floating body with the liquid tank, modal sacrifice of second mode and impact of liquid 

on tank panels.  
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2.6. OBJECTIVE AND SCOPE OF THE WORK 

The objective of the present work is to simulate the nonlinear free surface waves in 2-D 

and 3-D Numerical Wave Tank (NWT) based on potential flow using FEM. 

The scope of the present work based on the review of literature are given below, 

1. To study the various velocity calculation techniques and its effect on 

smoothing/regridding strategies on the free surface. 

2. Comparison of the simulated nonlinear free surface waves with the experimental 

measurements. 

3. Quantitative comparison between numerical and experimental measurements 

based on Wavelet analysis. 

4. To implement unstructured mesh in 2D tank and to study the effect of different 

mesh moving strategies. 

5. Extension to 3D numerical simulation and to implement beach in the numerical 

model to carry out long time simulation. 

The above developed model has been successfully applied to investigate the problems 

listed below. 

1. Solitary wave interaction with vertical wall. 

2. Solitary wave propagation over uneven water depth. 

3. Nonlinear wave interaction with a submerged bar, a classical test for wave 

propagation model. 

4. Sloshing waves due to regular and random excitation in the horizontal and vertical 

directions. 
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2.7. SUMMARY 

In this chapter, detailed reviews of literature for the available methods in the simulation 

of nonlinear free surface waves are reported. The literature pertaining to the Finite 

Element based simulations are reported in the chronological order ever since the work of 

Wu and Eatock Taylor (1994). Further, the velocity calculation methods used by different 

authors in the context of FEM are highlighted. The chapter also shows a brief overview 

of the literature for the wave propagation over a bar, shallow water wave simulations and 

its interactions with structure and finally for the simulation of sloshing waves in a tank 

due to the excitation of the ship motions are reviewed, to show the applicability of the 

numerical model in these areas. Based on the review of literature, objective and scope of 

the work are drawn for the present study both in numerical aspects as well as in 

applications of the developed model. 
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Fig. 2.1 Flow Chart Showing the Progress of the Finite Element Method  
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CHAPTER 3 

NUMERICAL MODELLING 

3.1. GENERAL 

This chapter deals with the basic assumptions for the simulation of nonlinear free surface 

flow. The boundary value problem with the mixed Dirichlet and Neumann boundary 

conditions is solved based on the Mixed Eulerian and Lagrangian (MEL) formulation 

using Finite Element Method. The finite element formulation along with the proposed 

technique for the estimation of velocity and its advantages are explained in detail. 

Further, different velocity calculation techniques are implemented and discussed. The 

unstructured mesh implementation issues are reported in detail. 

3.2. GOVERNING EQUATION 

Two-dimensional fluid motion is defined with respect to the fixed Cartesian coordinate 

system, Oxz, with the z axis positive upwards. The water depth h is assumed to be 

constant. The fluid is assumed to be incompressible and the flow as irrotational. Viscous 

forces are neglected. This simplifies the flow problem to be defined with the Laplace’s 

equation involving velocity potential ( , , )x z tΦ given by 

02 =Φ∇  (3.1)

A potential flow in a rectangular flume with a wavemaker at one end and the nonlinear 

free surface boundary condition at the top boundary is considered. The schematic 

representation of the computational domain and the prescribed Neumann and Dirichlet 
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boundary conditions on the three boundaries (bottom, left and right) and at the free 

surface is shown in Fig. 3.1. 

3.3. BOUNDARY CONDITIONS 

Flume bottom is assumed to be flat, rigid and impermeable. 

0 @ ,∂
= =−

∂
z h

n
Φ on BΓ  (3.2)

Far field is modelled as a fully reflecting wall. 

0 @ ,∂
= =

∂
x l

n
Φ  on ∞Γ  (3.3)

Wave paddle motion on the left end is prescribed as, 

( ) @ ( ),
•∂

= =
∂

p px t x x t
n
Φ  on pΓ  (3.4)

where, )(tx p  is the time history of wave paddle motion. 

Dirichlet boundary conditions are specified at the free surface with respect to the 

instantaneous velocity potential ),( zxΦ which is obtained from the nonlinear kinematic 

and dynamic free surface boundary conditions. 

The nonlinear dynamic free-surface condition to be satisfied at the air-water interface at  

η=z can be written as, 

1 0 @ ( , )
2

∂Φ
+ ∇Φ∇Φ+ = =

∂
η ηg z x t

t
 on fΓ  (3.5a)

The kinematic boundary condition considering no flow through the free surface can be 

written as, 
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The difficulty with the above free surface boundary conditions is that the location of the 

free surface is not known in prior and it makes implicit form of solution. It can be 

overcome by rewriting in terms of Lagrangian or Eulerian form and marched in time to 

get the new position. In the simulation of nonlinear free surface waves, the second term 

in Eqn. (3.5a) usually called as convective term (i.e., the variation of the field variable in 

space) plays a major role. 

Lagrangian form  

The Lagrangian form of nonlinear free surface boundary condition is given by Longuet –

Higgins and Cokelet (1976). 

xDt
Dx

∂
Φ∂

=  

zDt
Dz

∂
Φ∂

=  

ηg
Dt
D

−Φ∇Φ∇=
Φ

2
1  

(3.6a)

The above equations are obtained by substituting the substantial or material derivative 

∇Φ∇+
∂
∂

= .
tDt

D  in the Eqn. (3.5a) and Eqn. (3.5b).  

The above dynamic and kinematic free surface conditions can be modified as follows to 

include the wave absorbing beach on the other end of the flume, 

xDt
Dx

∂
∂

=
Φ

 

( )Dz v x z
Dt z

Φ∂
= −
∂  

(3.6b)
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1 ( )2
D g v xDt
Φ Φ Φ η Φ= ∇ ∇ − −

 

where, v(x) is a damping coefficient defined by (Cointe et al. 1990) 

2
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σ  (3.6c)

where, L is the length of the wave flume. The damping frequency (σb) is used to control 

the strength of the damping zone, while the parameter Lbeach (beach length) is used to 

control the length of the damping zone. For an effective wave absorption, the choice of 

damping coefficient is crucial. 

Semi-Lagrangian form 

This form of the free surface boundary condition restricts the movement of the nodes in 

the horizontal direction but allows only in the vertical direction and is given by, 

1 0
2

g
t z t

δΦ Φ ηΦ Φ η
δ

∂ ∂
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∂ ∂
 (3.7a)
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∂ ∂
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Upon expansion, these can be written as 
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In the above equations, the kinematic free surface boundary condition is still in the 

Eulerian form, where as, the dynamic boundary condition is strictly not in the Eulerian 

form. The derivative δ/δt is different from ∂/∂t (local derivative) and D/Dt (substantial 

derivative) in the sense that the node is allowed to move only in the vertical direction 
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over the time rate of change. Thus, this form is known as the Semi-Lagrangian approach, 

due to the restriction of nodal movement in the horizontal direction. One of the 

difficulties with this approach is the calculation of the free surface elevation with respect 

to time [Eqn.(3.7d)], due to which the error accumulates over the period of time. The 

advantage of this method compared to Lagrangian form, is that the process of regridding 

is not required.  

Depending on the problem considered, one can choose a suitable method. In the 

literature, it is quoted that for floating bodies or breaking waves, the Lagrangian approach 

is more suitable. For fixed structure, such as submerged obstacles or multiple cylinder 

under non-breaking waves, semi–Lagrangian approach suits well compared to 

Lagrangian approach. In the present study, both forms are adopted depending upon the 

problem considered. 

3.4. MIXED EULERIAN - LAGRANGIAN (MEL) SCHEME 

The Mixed Eulerian-Lagrangian scheme was originally proposed by Longuet- Higgins 

and Cokelet (1976), according to which the boundary value problem associated with the 

Laplace Equation is split into two steps, 

1) Eulerian Framework: For the given domain, the instantaneous velocity potential 

inside the domain is obtained based on the prescribed forcing or rigid boundaries.  

2) Lagrangian Framework: Based on the solution sought in the above step, the 

velocity potential and the free surface wave elevation are updated by integrating 

the free surface boundary condition [Eqns.(3.6a),(3.6b) and (3.6c)]. 

This scheme plays a major role in the free surface simulation due to the discrete 

representation of the free surface elevation. In the present study, the solution in the 



 30

Eulerian Framework has been sought using FEM, due to the advantages of handling the 

complex domains and also free from any singularity compared to BEM/BIEM. The 

second step, i.e., updating of velocity potential and free surface elevation needs more 

attention, because the integration has to be carried out with respect to time, during which 

the numerical error accumulates. For the time integration, many different schemes have 

been addressed in the past studies to eliminate this type of error.  

There are two notable approaches: One is based on the truncated Taylor’s series 

expansion as originally implemented by Dold and Peregrene (1986) for the free surface 

evaluation and later used by many authors in space periodic wave modelling (Grilli et al. 

1989; Skourup and Jonsson, 1992). The difficulty with this approach is that it is not 

suitable for wave-structure interaction considering moving surface due to the difficulty in 

arriving second derivatives. The second approach is based on the direct integration, as 

proposed in MEL approach by Longuet-Higgins and Cokelet (1976). The direct time 

integration of the equation can be done, based on the numerical approach such as ABPC, 

RK method or open trapezoidal rule. This direct time integration of the equation is 

implemented in the present study and is explained in section 3.8. 

3.5. FINITE ELEMENT FORMULATION 

The Finite Element method adopted herein follows the formulation of Wu and Eatock 

Taylor (1994). The boundary value problem, defined by Laplace equation is solved at 

every time step for the prescribed Neumann and Dirichlet boundary conditions in a 

closed domain. The fluid domain (Ω ) is divided into finite elements connected with ‘n’ 

number of total nodes. The velocity potential inside an element ),( zxΦ  can be expressed 
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in terms of its nodal potentials, jφ ( j = 1, 2….m, where, m is the number of nodes in the 

element) 

1
( , ) ( , )

m

j j
j

x z N x zΦ φ
=

=∑  (3.8)

Herein, jN  is the shape function of the element. Applying the weighted residual 

statement to the Laplace equation leads to, 

2 0iw d
Ω

Φ Ω∇ =∫ , i = 1,2….n. (3.9)

Galerkin method states that weight function is equal to shape function. 

2 0iN d
Ω

Φ Ω∇ =∫  
(3.10)

Following the spatial derivative form,  

( ) 2
i i iN N Nφ φ φ∇ ∇ = ∇ +∇ ∇  (3.11)

The integral formulation, Eqn. (3.10) leads to, 

( )( ) 0i iN N d
Ω

φ φ Ω∇ ∇ −∇ ∇ =∫  
(3.12)

Substitution from Eqn. (3.8) and Gauss theorem yields the above domain formulation into 

discrete nodal potentials in the entire domain and the boundary (Γ) constraints.  

∑∫∫
=ΩΓ

=Ω∇∇−Γ
∂
Φ∂ m

j
jjii dNNd

n
N

1

0φ  (3.13)

After substituting the boundary conditions, the final FEM formulation without the 

Dirichlet condition is given by,  

1

( )
p

m

pi j j i
j

N N d N x t d
Ω Γ

φ Ω Γ
•

=

∇ ∇ =−∑∫ ∫  (3.14)

The above equation can be rewritten in the matrix form and the Dirichlet condition on the 

free surface can be implemented after forming the matrix equations as given below, 
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Aij Φ = Bi (3.15)

Where, 

Aij = 

, ,

1 , &
0 ,( )&

i j s

s

s s

N N d i j

i j j
i or j i j

Ω

Ω Γ

Γ
Γ Γ

⎧ ∇ ∇ ∉
⎪
⎪

= ∈⎨
⎪ ∈ ∈ ≠⎪
⎩

∫
 (3.16)

Bi = 
( )

,
p

pi

i s

N x t d

i
Γ

Γ

φ Γ

•⎧−⎪
⎨
⎪ ∈⎩

∫  (3.17)

In the above, the velocity potential is known at the free surface before the 

commencement of simulation inside the fluid domain. Due to symmetry, the storage is 

done on the half-banded assembly and Gauss elimination is used to solve the above 

matrix to seek the solution, Φ. 

3.6. VELOCITY CALCULATION METHODS 

3.6.1. General 

To satisfy the nonlinear kinematic and dynamic free surface conditions in the potential 

flow formulation, the horizontal water particle velocity at the free surface needs to be 

evaluated in order to extract the free surface elevation at each time step. Once the 

velocity potential is obtained by solving the matrix Eqn. (3.15), the free surface 

horizontal and vertical velocities can be evaluated. However, the need for smoothing or 

regridding arises due to the inaccurate evaluation of the velocity from the velocity 

potential. The direct differentiation of the velocity potential results in the approximation 

of the velocity field in an order lower than the approximation of potential as, 
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1

m

j j
j

NΦ φ
=

∇ = ∇∑  (3.18)

The above approximation has been used by Wang and Khoo (2005), considering 8 noded 

iso-parametric element. But, in the case of linear element, it is not that accurate enough. 

The reason for choosing linear element (3-noded triangular) by most of the authors is that 

it is easier to implement for complex geometries. Further, all the integration can be 

performed explicitly, which not only saves considerable computation time but also 

eliminates a possible source of error in time dependent problem. Hence, to achieve a 

greater accuracy in the velocity calculation, several approaches were proposed such as 

the global projection method (Wu and Eatock Taylor, 1994) and local finite differences 

(Cai et al. 1998; Westhuis, 2001; Ma et al. 2001; Steinhagen, 2001). The application of 

the global projection method (considering structured mesh) for the nonlinear free surface 

problem leads to unstable high frequency waves that will be discussed in section 3.12. 

The local finite difference technique is more accurate compared to the global projection 

method, but it requires local smoothing or local regridding. After obtaining the horizontal 

and vertical velocities, the new positions of the free surface and the velocity potential are 

evaluated by integrating the dynamic and kinematic equations. The integration is carried 

out using the standard fourth order methods like Runge-Kutta method/Adam Bashforth 

method. Both methods are found to be stable based on our investigation, which will be 

discussed in the subsequent section. The general procedure for the simulation is shown in 

Fig. 3.2. The smoothing or regridding at each time step has to be minimized for the long 

term simulation of nonlinear waves to avoid possible energy diffusion. Four methods of 

velocity calculations are discussed below. 
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3.6.2. Global Projection (GP) Method 

The velocity vector, u = ui + wj is written in terms of shape function similar to Eqn. 

(3.8). The Galerkin method is used to approximate the velocity (∇Φ = u) in the form of  

0iN ( u )d
Ω

Φ Ω∇ − =∫  
(3.19a)

This leads to the following equation in matrix form, 

[C]{u} = [D1]{φ} and [C]{w} = [D2]{φ} (3.19b)

where, 

ij i jC N N d
Ω

= Ω∫  

1 j
ij i

N
D N d

xΩ

∂
= Ω

∂∫  and 2 j
ij i

N
D N d

zΩ

∂
= Ω

∂∫  
(3.19c)

u and w correspond to horizontal and vertical velocities at each node. The above method 

was proposed by Wu and Eatock Taylor (1994). The disadvantage of this method is that it 

requires a quality mesh at every time step and more computational time which are further 

discussed in the next Chapter. 

3.6.3. Least Squares (LS) Method 

The least squares method to estimate the horizontal velocity proposed by Turnbull et al. 

(2003b) is briefly explained as follows. Consider an arbitrary free surface node, i 

connected to k neighbouring nodes in the Finite Element mesh. Let Ik denotes the 

position vector connected to the free surface nodes (i) to the nth (n=1,…,k) node under 

consideration. Then, the velocities are estimated by using the following least square 

approximation in the matrix form. 
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1 1 1

1 1 1
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k k k
n n n n n n
l l l l l l

n n n

x x x z x
u
w

x z z z z

φ

φ

= = =

= = =

⎛ ⎞ ⎧ ⎫
⎜ ⎟ ⎪ ⎪⎧ ⎫ ⎪ ⎪⎜ ⎟ =⎨ ⎬ ⎨ ⎬⎜ ⎟⎩ ⎭ ⎪ ⎪⎜ ⎟⎜ ⎟ ⎪ ⎪⎝ ⎠ ⎩ ⎭

∑ ∑ ∑
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 (3.20a)

where,  

2 2

( ),
( ) ( )

n i n
l

i n i n

x xx
x x z z

−
=

− + −
, 

2 2

( ),
( ) ( )

n i n
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x x z z

−
=

− + −
 

2 2
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n i n
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φ φ

φ
−

=
− + −

 

 

The above equation reduces to the following, if one knows the vertical velocity (w) at ith 

node. 

1 1

1

, , , ,

, ,

k k
n n n n
l l l l i

n n
i k

n n
l l

n

x x z w
u

x x

φ
= =

=

−
=
∑ ∑

∑
 (3.20b)

Similar kind of equations but without normalising by the distance has been implemented 

in a three - dimensional tank by Ma et al. (2001). On the other hand, the vertical velocity 

can be estimated with the backward finite difference scheme taking the advantage of 

distributing the nodes in a vertical line during mesh generation. Consider φj as the 

velocity potential at the nodes corresponding to zj, where j = 1, 2, 3 as shown in Fig. 3.3. 

The vertical velocity at the free surface node can then be obtained as 

( )
( )( )

2 2
1 2 3

1 2

1

1
,

z z z

α φ α φ φΦ
α α

− − +∂
=

∂ − −  
(3.21)

where, 

1 3

1 2

z z .
z z

α −
=

−                    
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When the nodes are equidistant (i.e., α =2), the above equation reduces to the standard 

Backward Finite Difference (BFD) scheme. The procedure for estimating horizontal 

velocity holds good irrespective of the mesh structure, when one knows the vertical 

velocity. The estimation of vertical velocity using BFD is also successfully implemented 

by Ma and Yan (2006) with unstructured mesh discretization; the details are given in the 

unstructured mesh implementation of this chapter.  

3.6.4. Mapped Finite Difference (MFD) 

The estimation of vertical and horizontal velocities is evaluated based on mapped finite 

difference scheme. The wavy surface domain is transformed to a rectangular domain, i.e., 

the mesh is transformed from the physical coordinate system(x, z) to a mapped coordinate 

system (ξ,ς) as follows, 

ξ= x 

( )
h z

h x
ς

η
+

=
+  

(3.22a)

Then, the velocities are estimated based on the second - order FD scheme which are 

based on the velocity potentials with respect to the new coordinate system (ξ , ς). After 

estimation of velocity, it is again transformed to the physical coordinate system using the 

following equations which are obtained using the chain rule of differentiation. 

2

( )
 ( ( ))

h z x
x h x x

η
ξ ς η

∂ ∂ ∂ + ∂
= −

∂ ∂ ∂ + ∂
 (3.22b)

1
( )z h xς η

∂ ∂
=

∂ ∂ +
 (3.22c)

This methodology is adopted by Steinhagen (2001). From the procedure, it is clear that it 

leads to accurate velocity estimation but the mapping has to be done at each time step. 
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Limitations that arise by using this procedure are the simulation of overturning waves and 

the implementation for unstructured mesh. 

3.6.5. Cubic Spline (CS) 

In order to minimize the need for smoothing or regridding, splines are used as a velocity 

calculation method. Splines provide a better approximation for the behaviour of functions 

that have abrupt local changes. Further, splines perform better than higher order 

polynomial approximations. The efficient implementation of cubic splines as numerical 

differentiation for the evaluation of the tangential velocity in the simulation of waves 

using the lower order BEM has been adopted by Sen et al. (1989). In the present study, 

the cubic spline has been tried as a first attempt to evaluate the velocities in the context of 

FEM. The horizontal velocity is evaluated by fitting a cubic spline to the ‘x’-coordinates 

and potentials, φ(x, z). The end conditions are considered as the natural spline condition. 

To evaluate the smooth first derivative at the ith node, five nodes are considered (two 

nodes on either side of the ith node) in order to minimize the effect of boundary 

constraints (natural spline condition). 

Let us consider that fi, f’i, f”i, are continuous over a given interval. Based on the 

continuity condition, we have 

( ) ( )1 1
1 1 1 1

1

1 1
6 3 6

2 3 1

i i i i
i i i i i i i

i i

x x x xf " f " f " f f f f
x x

i , ...k .

δ δ δ δ
δ δ

+ +
− + + −

+

+
+ + = − − −

= −

 

(3.23a)

The above equation leads to a set of (k-2) linear equations for k unknown functional 

values, fi. The horizontal spacing (δx) between the two nodes is a known parameter. The 



 38

above stated equation is solved by using the tridiagonal system of matrix assuming the 

second derivatives at the ends are zero i.e., the natural spline condition.  

In the present simulation, assuming fi =φi, the derivatives at a particular node (φi) are 

found out by considering two nodes on either side (k = 5) as can be seen in Fig. 3.4, with 

the second derivatives (φ”i-2, φ”i+2) at the end nodes being set to zero. Following the 

evaluation of the second derivatives, the first derivative can be estimated using 

Eqn.(3.23a) at the required node (φ’3), which are derived in the intermediate steps of the 

cubic spline interpolation (Jain et al. 2003). 

1
1

62 i i
i i i

i i

f ff " f " f ' .
x xδ δ

+
+

⎛ ⎞−
+ = −⎜ ⎟

⎝ ⎠  
(3.23b)

It should be noted that the above formula is valid only for calculating velocities at the 

intermediate nodes and not at the end nodes. At the wave board, the velocity is assumed 

to be the input velocity and the velocity at the second node is evaluated by interpolation 

between the wave board and the third node (which is estimated from the above method). 

Similarly, at the end of tank, the velocity is assumed to be zero. For the evaluation of 

velocity in the vertical direction, second order FD scheme is used as described in section 

3.6.3. 

One of the main advantages of the cubic spline approach is its capability of estimating 

smooth first derivatives, that minimizes the requirement of smoothing/ regridding when 

adopting the Lagrangian approach and smoothing in the case of Semi- Lagrangian 

approach, which are discussed in the following section. On the other hand, this method 

does not hold good for the very steep wave fronts. When the nearby nodes fall on a 

vertical line, Eqn. (3.23a) becomes singular. Moreover, the procedure holds good for 
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two-dimensional tank only. A modification is certainly required for an extension into 

simulation in the three-dimensional tank. 

3.7. MESH GENERATION 

The generation of structured mesh is made simple in the present study. The required 

mesh structure should follow the velocity potential phenomenon (i.e., exponential decay 

across the depth) to minimize the number of nodes in the simulation. The new nodal 

coordinates have to be generated at every time step using the formula. Hence, the nodal 

numbers and the element connectivity remain the same throughout the simulations. To 

explain the mesh generation routine, consider a known free surface elevation, 

2cos
2i i
H xπη

λ
⎛ ⎞= ⎜ ⎟
⎝ ⎠  

(3.24)

where, λ  is the wave length and H is the wave height. i is the index number on the free 

surface. The known free surface is then divided into equal distance using, 

( )( )1 *
i

i
x

NX
λ−

=  
(3.25)

where, NX is the number of elements in the x– direction (at the free surface).  

 Having divided the x- coordinates and evaluated the free surface elevation through Eqn. 

(3.24), the z- coordinates are evaluated using, 

( ) ( )( )( )
( )( ),

1 exp 1 /
1 exp

z i
i j i i

z i

h NZ j NZ
z h

h
α η

η η
α η

− + + −
=− + +

− +
 

for i = 1,2…NX+1and j = 1,2… NZ+1 

(3.26)

where, αz is the parameter controlling the mesh size along the vertical direction, taken as 

2.0 (Wu and Eatock Taylor, 1994). NX+1 and NZ+1 are the number of nodes along the 
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horizontal and vertical directions, whereas, Zi,j are the vertical coordinates. Typical nodal 

coordinates for the above said problem, assuming λ  as 2 is depicted in Fig. 3.5.  

Once, the nodal coordinates and node numbering are established, the element 

connectivity is done using the following subroutine. The column to the right explains the 

physical interpretation. 

N = 1 
Q = 1 
IE = 2 * NX * NZ 
DO M = 1,IE,2  
     ELENOD(M,1) = N 
     ELENOD(M,2) = N+NZ+1 
     ELENOD(M,3) = N+NZ+2  
     ELENOD(M+1,1) = N 
     ELENOD(M+1,2) = N+NZ+2 
     ELENOD(M+1,3) = N+1 
    N  = N+1 
           IF(N.EQ.Q*(NZ+1)) THEN 
                 N = (Q*(NZ+1))+1 
                Q = Q+1 
          END IF 
END DO 

 
 
 
 

  

Typical generated mesh configuration is shown in Fig. 3.6. In the context of FEM, the 

mesh orientation plays a major role in the evaluation of velocity potential when one deals 

with structured mesh. The above mesh structure has been taken based on the mesh 

orientation study carried out by Westhuis (2001) using the Eigen values. 

3.8. NUMERICAL TIME INTEGRATION 

The numerical time integration plays a major role in any time marching problem. For the 

present nonlinear wave simulation study, the numerical integration has to be carried out 

for the dynamic and kinematic free surface boundary conditions given in Eqn. (3.6) or 

Eqn. (3.7).  To explain this, consider Fig. 3.7, if one knows (x, z, φ )  values at time t, the 

N =1

1*(NZ+1) 2*(NZ+1) Q *(NZ+1) 

N =2

N =1*(NZ+1) +1 

M =1

M =2

M =IE 
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new coordinates at the next time step (t+Δt) can be evaluated using Taylor’s series 

(forward difference). 

t t t
t

t t t
t

t t t
t

Dxx x t
Dt
Dzz z t
Dt
D t
Dt
φφ φ

+Δ

+Δ

+Δ

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠

⎛ ⎞= + Δ⎜ ⎟
⎝ ⎠

 (3.27)

where, the second term in the above equations has been evaluated as described above 

using either of Eqn. (3.6) or Eqn. (3.7).The direct application of the above equations lead 

to spurious free surface oscillations even if small time steps are adopted. Hence, a fourth- 

order method based on Runge-Kutta (RK) or Adam–Bashforth predictor corrector 

(ABPC) method is adopted in the present study. 

The fourth-order method based on RK using explicit time integration is carried out as 

described below. If the free surface nodes and the associated velocity potential at current 

time step i, are known then, 

Si = (xi, zi, φi) (3.28)

where, 

xi  =  {x1, x2,……… xNX+1}i  ,   zi  =  {z1, z2,……… zNX+1}i   , 

φi  =  {φ1, φ2,……… φNX+1}i 

Similarly, the time derivatives can be written as, 

( ),i
i i i

DS F t S F
Dt

= =  (3.29)

The above equation corresponds to the dynamic and kinematic free surface boundary 

conditions either in Lagrangian or semi-Lagrangian form. 
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In order to know the updated free surface location and the corresponding velocity 

potential for the next time step, the explicit RK requires the evaluation of velocity at 

intermittent time steps as given below. 

 

(3.30a)

31 2 4
1 6 3 3 6i i

SS S SS S+ = + + + +  (3.30b)

Thus, it requires the evaluation of the Laplace equation for four times [at the intermediate 

time steps Eqn. (3.30a)] for the boundary movement to evaluate the new free surface 

location and the corresponding velocity potential for the time step, Δt. The advantage of 

using the above classical RK method is that it is numerically stable for a large class of 

problems and it can be used as a self starter for other time integration methods. 

In the case of ABPC, this multi step method consists of an explicit predictor and an 

implicit corrector for each time step Δt. It is given by, 

( )1 1 2 355 59 37 9
24

p
i i i i i i

tS S F F F F+ − − −
Δ

= + − + −  

( )1 1 1 29 19 5
24

c p
i i i i i i

tS S F F F F+ + − −
Δ

= + + − +  
(3.31)

In free surface problem using MEL procedure, one-time evaluation of corrector step is 

found to be adequate. Thus, ABPC requires the evaluation of Laplace equation two times 

with the new boundary conditions to obtain the updated free surface coordinates and the 

associated velocity potential for a time step of Δt. Hence, the computation time for this 

method is half that of RK method. 

( )1 ,i iS t F t S= Δ

( )2 1/ 2, / 2i iS t F t t S S= Δ + Δ +

( )3 2/ 2, / 2i iS t F t t S S= Δ + Δ +

( )4 3,= Δ + Δ +i iS t F t t S S
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3.9. SMOOTHING/REGRIDDING TECHNIQUES 

In a time stepping simulation, numerical instability and the high frequency oscillation are 

common phenomena due to inaccurate evaluation in any part of the numerical algorithms 

(for example, in the process of velocity estimation in case of FEM, during numerical 

integration). In order to overcome these difficulties, the usual practice is to apply 

smoothing or regridding at the new free surface and the associated velocity potential. 

There is major difference between smoothing and regridding techniques. Smoothing is a 

process by which data points are averaged with their neighbours in a series. It filters the 

high frequency component and enhances the low frequency component. Thus, too much 

smoothing leads to energy loss in the system. Regridding is nothing but redistributing the 

nodes and the associated values at an equal or variable spacing. In the present thesis, the 

smoothing is carried out based on five point smoothing technique proposed by Longuet-

Higgins and Cokelet (1976) and the regridding technique based on constant arc length by 

fitting a cubic spline as proposed by Dommermuth et al. (1988). They applied it 

periodically and postulated that regridding results in relatively lesser loss of energy from 

the system. Thus, it can easily be applied at intersection points, not like smoothing 

techniques that are difficult to implement. The main disadvantage of regridding is the loss 

of resolution in the zone of higher gradients. 

3.10. ALGORITHM   

The algorithm for the numerical procedure is briefly reported herein. Assume the initial 

velocity potential and surface elevation. Digitize the entire domain using the required 

number of nodes and establish the element connectivity. Apply FEM and obtain the 

velocity potential inside the fluid domain. The challenging task in the simulation is then 
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the velocity estimation. Recover the horizontal velocity using the suitable methodology 

on the free surface. Based on the velocities, update the free surface nodes using the 

dynamic and kinematic boundary conditions based on Lagrangian / Semi-Lagrangian 

approach. The integration can be carried out using the fourth order Runge-Kutta method 

that requires repeated evaluation of velocity potential and velocity at the intermediate 

time steps to obtain the new position at next time step. The integration using Adam-

Bashforth method is half expensive than the Runge-kutta method. Depending upon the 

problem in hand, choose the respective one. After the computation of the new free 

surface position and velocity potential, repeat the calculation as many times required 

based on the termination time. The flow chart of the numerical simulation is depicted in 

Fig. 3.8. 

3.11. UNSTRUCTURED MESH IMPLEMENTATION 

For modeling complex geometry or for the simulation in the presence of floating bodies, 

one needs to resort to an unstructured mesh simulation. In this section, the 

implementation issues related to the simulation of nonlinear free surface waves in the 

context of unstructured FEM has been briefly described. For successful implementation, 

suitable velocity calculation methodology should be adopted. The MFD method is 

difficult to implement when the mesh is generated using unstructured mesh, where, the 

node numbers are not in regular orientation, whereas, LS, CS and GP methods can be 

implemented.  

3.11.1. Dynamic Mesh Moving  

In the case of structured mesh, the element connectivity remains the same, whereas, the 

node positions at every time step are evaluated based on the new free surface nodes with 
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the vertical elevation calculated using a simple formula [Eqn.(3.26)]. The computation is 

inexpensive and thus regeneration of mesh nodes can be done with ease. In the case of 

unstructured mesh, one has to resort to the external mesh generation code (First 

approach) or commercial CFD mesh generators (second approach). While using the first 

approach, regeneration of mesh is possible at every time step by simply calling the 

external code from the source code, whereas, in the second approach, it is not possible to 

update at every time step automatically. Wang and Wu (2006) used the first approach of 

regenerating the mesh at every time step using the public domain code called BAMG. In 

the second approach, one can use the commercial CFD mesh generators like GAMBIT, 

ICEM-CFD to create the initial mesh. Then at every time step, a mesh moving technique 

like Laplacian smoothing/ Torsional spring/spring analogy method can be invoked to find 

the new nodal position. The second approach is more popular in the field of 

aerodynamics and is similar to Arbitary Lagrangian and Eulerian (ALE) method. Hence, 

in the present study, it has been named as Semi-ALE (SALE) but the basic principle 

remains the same. 

Sudharsan et al. (2004) compared three different mesh movement schemes namely 

Laplacian smoothing, Torsional spring and Spring analogy for the nonlinear free surface 

problem. It has been concluded that the spring analogy is a good choice for handling 

complex geometries. There are two different methods usually used in spring analogy: one 

is vertex method and the other is segment method. The vertex spring analogy was 

originally used for smoothing a mesh after mesh generation or refinement. The segment 

spring analogy was developed for the deformation of the mesh in a moving boundary 

problem. Blom (2000) gave a detailed considerations on both segment and vertex 

methods. Both the normal vertex and spring methodologies led to mesh skewness near 
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the boundary. So, the method has been improved by using modified stiffness and hence, 

the name ‘improved vertex/segment spring methodologies’. Blom (2000) has suggested 

that the stiffness should be increased for the boundary layers compared to the interior 

layers. Considering the applicability in the field of simulation of nonlinear waves, 

Sudharsan et al. (2004) assumed the stiffness in the boundary layer alone and concluded 

that vertex method is superior to all the available methods to treat wave-structure 

interaction problems. However, Ma and Yan (2006) used segment method and showed 

promising results, by adopting the stiffness in such a way that the adjacent layers (i.e., 

along the entire water depth) were also stiffened. Hence, in the present study both the 

segment and vertex methods of spring analogy have been considered to test its suitability. 

In the following sections, an overview of both vertex and segment methods is given in 

detail to understand the physics behind these methods before applying them to nonlinear 

free surface waves. 

3.11.2. Vertex Method 

When the segments are considered as springs, it has to possess equilibrium length which 

is the initial length of the segment at rest. For vertex method, this equilibrium length is 

zero. The springs are taken as linear and therefore Hooke’s law determines the force ( iF  ) 

at every node i exerted by the nodes j, which are connected to node i, 

( )
1

m

i ij j i
j

F x xκ
=

= −∑  (3.32)

Where, κij is the stiffness of the spring between node i and j, m is the number of 

neighbours for node i. X is the coordinate vector (x, z are the coordinates of the node). 

The physical interpretation is shown in Fig. 3.9. For the system to be in equilibrium, the 
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force at every node i has to be zero. After simplifying, the Jacobi iterative equation can 

be written as, 

1 1

1

m n
jij

n j
i m

ij
j

x
x

κ

κ

+ =

=

=
∑

∑
 (3.33)

Equilibrium is not imperative for the mesh deformation since the spring model is only 

used as a tool to retain mesh quality. Therefore, a convergence limit of 1x 10-5 has been 

adopted. When the boundary is moved or deformed, the position of the boundary nodes is 

strongly imposed by Dirichlet boundary conditions after moving all the interior nodes. 

Since the equilibrium position of the springs is zero, every spring is under tension. That 

is, the new nodal positions are prescribed on the boundaries of the old nodal coordinates 

and the interior nodes are moved. Hence, the mesh can be deformed or moved by this 

spring analogy method even when the boundaries are not moved. Here, the spring 

stiffness is taken as one, a constant value. 

3.11.3. Segment Method 

Segment spring analogy was proposed by Batina (1990) in order to deform a mesh 

around a pitching airfoil. In this method, the equilibrium length of the spring is assumed 

to be equal to the initial length of the segments. According to Hooke’s law, the force is 

written similar to Eqn. (3.32) for the displacement of nodes as, 

( )
1

m

i ij j i
j

F κ δ δ
=

= −∑  (3.34)

where, iδ  is the displacement vector of the node i. For static equilibrium, the force at 

every node i has to be zero. Then the Jacobi iterative equation is, 
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1

m n
jij

n j
i m

ij
j

κ δ
δ

κ

+ =

=

=
∑

∑
 (3.35)

The above equation has to be solved separately for δxi (displacement along x direction) 

and δzi (displacement along z- direction). The Dirichlet boundary conditions are strictly 

imposed like in vertex method. Batina (1990) proposed the spring stiffness to be 

inversely proportional to the length of the segment. 

2 21= − + −ij i j i j/ ( x x ) ( z z )κ  (3.36)

After the iteration of Eqn. (3.35), the new nodal coordinates are found out by adding the 

final displacement to the old nodal coordinates. 

i i i

new final
x x δ= +  (3.37)

Thus in the above algorithm the displacement vector has to be kept in memory and hence 

the segment spring method requires more memory than the vertex method. The 

convergence limit for the iterative Eqn. (3.35) is 1 x 10-6. The convergence limit has been 

set to be higher compared to vertex method, since this is basically a deforming algorithm 

unlike a smoothing scheme. For efficient implementation and to reduce the number of 

iterations, the final displacement of the previous solution is taken as the initial known 

displacement for the interior nodes. 

3.11.4. Improved Vertex/Segment Method 

The concept of spring analogy is shown to be similar to the elliptic grid generation by 

Bloom (2000). Then, the principle of Saint Venant for elliptic equations holds for the 

deformation of the mesh by the spring analogy. This principle states that local 

perturbations of the solution only have local impact. As shown in the previous sections, 
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the spring analogy regularizes the mesh only near the moving or deformed boundaries at 

every time step. Thus, it could handle only small deformations. If the deformation is large 

then the overlapping of the nodes could take place. Hence, the improvement of the above 

methods (Bloom, 2000) has been suggested by modifying the stiffness as, 

2 2(( ) ( ) )ij i j i jx x z z ψκ χ= − + −  (3.38)

The above equation shows the inclusion of the principle of Saint Venant, i.e., the stiffness 

near the boundary is increased so that the deformation is spread out to the interior regions 

of the mesh. In order to achieve this, the factor χ is incorporated in the above said 

equation to increase the stiffness for a number of elements adjacent to the deformed 

boundaries. The stiffness in Eqn. (3.38) is applicable to both segment and vertex methods 

by suitably taking the spring stiffness, which depends upon the problem in hand and also 

in understanding the physics behind the methods (as described earlier). While using 

vertex method, basically a smoothing algorithm, a constant value of χ for the boundary 

and interior elements is used. While using segment method, basically a mesh deformation 

algorithm, a group of layers adjacent to the boundary has to be taken into consideration 

depending upon the problem. For the present nonlinear free surface problem, it is well 

known fact that the behaviour of wave kinematics is an exponential decay across the 

depth. Thus, an exponential decay factor of χ should be a good approximation. The 

power coefficient ψ defines the strength of the stiffness with respect to the distance 

between the nodes. 

3.11.5. Node Table Connectivity (NODETAB) 

The important part of the unstructured mesh implementation, when one deals with mesh 

moving algorithms, is the establishment of nodal connectivity table. In the present 
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application, this table serves for two purposes: one as described above for mesh moving 

strategies and the other for the interpolation of velocity potential when one uses Moving 

Least Square method which is explained later. After, the mesh is generated by using any 

of the commercial softwares, the node renumbering has been done to optimize the band 

width of the matrix to reduce the computational time. The node renumbering has been 

done using Reverse- Cuthil Mckee reordering scheme for triangular mesh. The next step 

is to establish the node table connectivity. This will give the information of the 

neighbouring nodes connected to the node under consideration. Thus, the node 

connectivity table remains same for the mesh under consideration throughout the 

simulation time. The physical interpretation of node table is explained below in reference 

to Fig. 3.10. If one considers the given node number, then the neighbouring nodes can be 

easily identified by searching all neighbouring element. The final table will be generated 

as shown in Table 3.1 after omitting all the duplicate nodes. The column values in J 

indicate the number of nodes that are connected to the given node (but it has been stored 

in terms of array dimension, i.e., J-1 gives the number of neighbours).  

3.11.6. Vertical Velocity Estimation 

The implementation of the above formulation based on FEM to evaluate velocity 

potential and global projection method (to calculate velocity) to extract the velocity is 

straight forward irrespective of the mesh whether it is structured or unstructured. The 

estimation of the horizontal velocity using LS method also still holds good. The 

investigators in the past have taken advantage of the vertical distribution of mesh and 

evaluated the vertical velocity accurately using BFD scheme. However, in the case of 

unstructured mesh, BFD scheme does not hold good. Ma and Yan (2006) proposed a 
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sensible technique of effectively using this strategy by drawing the normal line with 

respect to free surface and used an effective Moving Least Squares (MLS) method for the 

interpolation of the two points over the normal line. But computationally, it is expensive 

since it deals with the group of old nodes. After the estimation of normal velocity, the LS 

method is used to evaluate the tangential velocity. This is used in the calculation of the 

LS [Eqn.(3.20b)]. Thus, CS can also hold good for 2D unstructured mesh. Hence, in 

order to use the above strategies, the vertical velocity has been calculated by using the 

following algorithm.  

A vertical line to the free surface node is constructed and two points in that line have 

been used to evaluate the vertical velocity using backward finite difference method. The 

first point should lie in the triangle (say ‘A’) which has the given point under 

consideration, criteria is d1 = 0.7d where, d is the perpendicular distance from the given 

point to the intersection of the virtual vertical line to triangle segments (opposite edge) as 

depicted in Fig. 3.11. The second point should lie in the adjacent triangle below ‘A’ , 

criteria is d12= 1.4d and it should not be too far away. The important tasks are locating the 

triangle and interpolating the velocity potential to the new point since the values are not 

known inside the triangles in FEM. These two algorithms are described below. 

Finding a triangle (TRIFIND) 

In order to find a triangle, for the known x, z coordinates inside the triangulation domain, 

the following algorithm can be used. Consider, ‘J’ a point under consideration assumed to 

be inside a triangle then corresponding element can be found out by calculating the 

following vectors.  
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VJ1 = {xJ - xa, zJ - za}, VJ2 = {xJ - xb, zJ - zb}, VJ3 = {xJ - xc, zJ - zc} 

Vab = {xa - xb, za - zb}, Vbc = {xb - xc, zb - zc}, Vca = {xc - xa, zc - za} 

 

(3.39)

where, a, b, c are the element vertices under consideration. 

In order that the nodal point J should lie under the element, then, the following inequality 

should satisfy, 

VJ1   x  Vab   >=0, 

VJ2  x Vbc   >=0,  

VJ3  x Vca   >=0 

 

 

(3.40)

If the above cross-product equality satisfies for a given point and element under 

considerations, then the point lies inside the element. Once, the triangle is known, the 

point ‘J’ has the corresponding 3 vertices as the neighbouring node. 

Interpolation  

One can adopt shape function of the element using TRIFIND algorithm in order to 

evaluate the velocity potential at point ‘J’ within the element. This is reasonably accurate 

enough for small steep waves. But when the waves are steep enough, it leads to an over 

estimation of the values, a general drawback of the interpolation technique. In order to 

overcome this drawback, MLS technique has been adopted. This is a popular 

interpolation algorithm emerged in the context of Meshfree technique. The details 

regarding the MLS method is reported in Appendix A. This method basically does the 

interpolation using a group of nodes. The computational efficiency to minimize the time 

consumption to find the group of nodes at every time step is still a topic of research in 

meshfree methods (Liu, 2002). Various stand alone algorithms are available to find the 

group of nodes like bucket algorithm, cell based algorithm, trapezoidal map and sweep 

algorithm. These algorithms, in general, consume more time. Hence, in the present study, 
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a new methodology has been developed by making use of the existing available data in 

the context of simulation of nonlinear free surface waves. The present algorithm is based 

on the nodal connectivity table (NODETAB) which has been explained in the previous 

section. The methodology starts from the previous section after one finds three nodes 

(TRIFIND algorithm). The methodology has been explained below in connection with 

the physical interpretation depicted in Fig. 3.12. The dark circles in Fig. 3.12a represent 

the point ‘J’, by using the algorithm of TRIFIND one can find the neighboring three 

points (as depicted by black dots, corresponds to node number 1989, 2084, 1985). Then 

use the NODETAB algorithm to find the neighbouring points for 1989, 2084, 1985 by 

neglecting the duplicate node numbers as shown in Fig. 3.12b. The NODETAB algorithm 

is repeated for 5 times to find the group of nodes surrounding the point J and eliminate 

the duplicate node numbers in the array that contains group of neighboring nodes for 

point J. From this group, one can select the required number of nodes (sub domain) 

which are required for MLS method.   

3.12. VALIDATION 

3.12.1. General 

In this chapter, a basic validation exercise has been presented to test various aspects of 2-

D structured mesh simulation algorithm. The subsequent chapters explore various aspects 

of modelling and application of nonlinear wave simulation. 

3.12.2. Steep Standing Waves in a Container 

Initially, the efficacy of the velocity calculation methods such as GP and CS for the 

simulation of 2-D nonlinear waves is studied by considering structured mesh. The 

generation of standing waves in a container, for which analytical and numerical solutions 
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are available from Wu and Eatock Taylor (1994), has been considered. Let L= 2h, where 

L is the length of the tank and h is the water depth. The initial water surface elevation is 

assumed as 

2cos
2i i
H xπη

λ
⎛ ⎞= ⎜ ⎟
⎝ ⎠  

(3.41)

where, H is the wave height, λ is the wave length and i is the free surface node index. 

From the given free surface profile, the wave propagation is initiated by no flow 

boundary conditions on the sidewalls of an impervious container and the propagation is 

governed by Eqn. (3.41). A comparison of the simulated free surface profile with results 

based on CS, GP and the second-order analytical solution for H/λ = 0.05 and 0.1 are 

shown in Fig. 3.13 and Fig. 3.14, respectively. The number of nodes used for both (CS 

and GP) simulations in the horizontal and vertical directions are 65 and 17, respectively. 

The time step of 0.06s is adopted which leads to a Courant number of 0.44. In these 

simulation, no smoothing was found necessary for applying the CS approximation on the 

free surface. However, Wu and Eatock Taylor (1994) stated the need for smoothing in the 

GP method. The CPU time required for the CS simulation by evaluating only the free 

surface velocity is 0.8750s per time step, whereas, for evaluating velocity at all the grid 

nodes, it is 1.2188s per time step, and in the case of GP method this was 1.8438s per time 

step. These simulations were carried out on a Pentium IV with 2.8GHz processor. Thus, 

the CS methodology is computationally inexpensive compared to GP method of velocity 

calculation. 

3.12.2 Error Analysis 

An approximation in a modeling system can be assessed by examining the energy loss. 

To quantitatively examine the energy conservation, a relative error analysis has been 
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carried out. A comparison has been made between the CS method, the results of Westhuis 

(2001) , the GP method and the analytical approach. 

The simulation was performed using the initial condition defined by Eqn. (3.41) for a 

steepness of 0.033 with the number of nodes in the x and z directions being 31 and 11, 

respectively. 

The total energy in the system is estimated from, 

( )2 2

0 0

1 1( )
2 2

L L

h

E t dzdx h dx
η

η
−

= ∇Φ + +∫ ∫ ∫  (3.42)

The relative energy error (δEt) for this simulation has been calculated using 

0
t

E( t ) E(0 )E
E(0 ) e

δ −
=

−  
(3.43)

where, E(t) is the total discrete energy at any time t, E(0) is the initial discrete energy in 

the container. The first term in Eqn. (3.42) is the absolute of convective inertia term and 

e0 is the total potential energy in the system when ηi =0. 

The second-order analytical solution of wave time history for the standing wave problem 

has been derived for the more general case that leads to the first and second order 

potential and the surface elevation at each time step in the entire domain. The derivation 

is given in Appendix B. The total energy is evaluated using Eqn. (3.42) and the 

integration is carried out numerically. A comparison between the CS simulation and the 

analytical solution for the wave profile at the center of the container is shown in Fig. 

3.15. 

The relative energy error (δEt) for the simulation using the GP method is presented in 

Fig. 3.16. The average relative energy error is of the order of 2.8 x 10-3.  The comparison 

of relative energy error using the CS simulation with the results of Westhuis (2001) and 
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second order analytical solution is depicted in Fig. 3.17. It is clearly seen that the relative 

error is of the same order as that of analytical results. Thus, it can be inferred that the GP 

method leads to relatively higher energy loss due to relatively inaccurate calculation of 

velocity (leading to some high frequency waves) and mesh instability. The CS method 

has an average relative energy error of an order of 1 x 10-3. 

Subsequently, the relative energy loss [∇Et] with respect to the energy calculated from 

the second order analytical solution has been derived using 

2

2

( ) ( )
( )t

E t E tE
E t
−

∇ =
 

(3.44)

where, E2(t) is the second order energy at any time t, 

Typical comparison of the relative energy loss obtained from Westhuis (2001) and GP 

method with the CS method are shown in Figs. 3.18a and 3.18b. It should be mentioned 

that the digitized result of Westhuis (2001) shown in the Fig. 3.17 has been used for 

evaluating E(t) to estimate the relative energy loss∇Et. From the results, the energy loss 

in the CS method is found to be of an order less than the other methods. The error is 

found to accumulate with an increase in simulation time in all the methods. It should be 

mentioned here that in all the simulations, mesh is regenerated at every time step based 

on the simple mesh generation technique suggested by Wu and Eatock Taylor (1994), 

without checking the mesh properties like skewness, aspect ratio. The results given by 

Sudharsen et al. (2004) based on GP method using mesh moving method is only for the 

short simulation time. The behavior of the GP method when one takes care of the mesh 

structure is discussed in the next chapter. 
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3.13. SUMMARY 

In this chapter, an in-depth explanation of the numerical modeling developed under the 

present study has been presented. The basic assumptions and boundary conditions for the 

simulation of nonlinear free surface waves are presented. The finite element formulation 

and the different velocity calculation techniques along with the proposed cubic spline 

approach are discussed in detail. The implementation issues for the unstructured mesh 

have been dealt with the different mesh moving algorithms. Different algorithms that are 

implemented in the present context for handling unstructured mesh have been explained 

in detail. Finally, the developed numerical model is validated for the free sloshing 

problem and an error analysis has been carried out. 
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Fig. 3.1 Computational Domain with Specified Boundaries 
 

 

 

 

 

 

 

Node J Neighbouring Nodes 

1989 7 1940 1942 1901 2008 2004 1985 
1985 5 1940 1989 2004 1986 0 0 

Table 3.1 Node Connectivity Table. 
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Fig. 3.2 General Procedure for the Wave Simulation 
 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 3.3 Node Configuration for Calculating Vertical Velocity 
 

 
 
 
 
 
 
 
 

Fig. 3.4 Cubic Spline Approximation using Five Nodes 
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Fig. 3.5 Typical Nodal Variation for a Cosine Free Surface Elevation 
 

 

 

Fig. 3.6 Typical Mesh Structure using Linear 3-Noded Triangular Element 
 

 

z (
m

) 
z (

m
) 

x (m)

x (m)



 61

 

 

 

 

 

Fig. 3.7 Time Updating Procedure 
 

 

 

 

Fig. 3.8 Flow Chart of the Simulation 
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Fig. 3.9 Physical Interpretation of Springs Connected to ‘i’th node to its 
neighbours such as ‘j’ 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.10 Mesh with Node Numbering
 

 

 

 

 

 

Fig. 3.11 Physical Interpretation to Calculate Vertical Velocity 
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Fig. 3.12a TRIFIND 
 

 

 

 

 

 

 

 

 
 
 
 

Fig. 3.12b Using NODETAB (1st Loop) 
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Fig. 3.12c NODETAB (2nd Loop)
 

Fig. 3.12 Physical Representation to Find the Group of Nodes 
 
 
 
 
 

 
 
 

Fig. 3.13 Time History of the Free Surface Profile at the Center of the 
Container for a Wave Steepness, H/λ = 0.05 [-----Analytical (upto 2nd 
order);  ♦♦♦ GP;  CS] 
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Fig. 3.14 Time History of the Free Surface Profile at the Center of the 
Container for a Wave Steepness, H/λ = 0.1 [------ Analytical (upto 2nd 
order) ; ♦♦♦ GP;  CS] 

 
 
 

 
 

Fig. 3.15 Time History of the Free Surface Profile at the Center of the 
Container for a Wave Steepness H/λ = 0.033 [---- Analytical (upto 2nd 
order);  CS] 
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Fig. 3.16 Relative Energy Error (δEt) while using GP Method 
 
 
 
 

 
 
 

Fig. 3.17 Comparison of Relative Energy Error (δEt) [------- Analytical 
Solution (upto 2nd order); ♦♦♦ Westhuis (2001);  CS] 
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Fig. 3.18a Relative Energy Loss (∇Et) with respect to Second order Analytical 
Solution [♦-♦-♦Westhuis (2001);  CS] 

 

 
 

Fig. 3.18b Relative Energy Loss (∇Et) with respect to Second order Analytical 
Solution [♦-♦-♦ GP;  CS] 

 



CHAPTER 4 

NUMERICAL WAVE TANK SIMULATION 

4.1. GENERAL 

The simulation based on FEM has the advantages of extending the code easily to viscous 

flow and to three-dimensional (3D) tank with complex geometry. While adopting FEM, 

the derivatives are usually found from differentiating the shape function, which is the 

direct differentiation of the velocity potential. The approximation of velocity field thus 

obtained is inferior to the approximation of the velocity potential. In time-dependent 

problems, this plays an important role. Thus, researchers have been focusing on obtaining 

the derivatives through different methods such as GP, MFD and LS method. The 

proposed method based on CS is also studied.  The present chapter shows a detailed 

review of these methods for calculating the derivatives including the advantages and 

disadvantages in the context of simulation of nonlinear free surface waves using 

structured/unstructured FEM. 

4.2. SIMULATION USING WAVE PADDLE: STRUCTURED MESH 

4.2.1 General 

The advantage of using the Finite Element method compared to the Boundary Element 

method is that even sudden startup of the wave paddle is possible. For simulation of 

regular waves, one end of the tank is considered to be a ‘piston’ type wave paddle. The 

paddle displacement, xp (t) is given by, 
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( ) ( )cos
2p
Sx t tσ=−  (4.1)

and the velocity of the paddle is, 

( ) ( )sin
2p
Sx t tσ σ=  (4.2)

where, ‘S’ is the maximum stroke of the wave paddle and σ is the angular wave 

frequency. It is well known that when the wave steepness is very small, the waves follow 

linear wave theory. Hence, a comparison between the nonlinear and linear wave 

simulation has been carried out. For simulating the linear waves, the free surface 

boundary condition [Eqn. (3.6) and Eqn. (3.7)] has been linearised. A comparison 

between linear and nonlinear wave simulation for very small steepness of 0.0036, 

considering the stroke length, S = 0.002h and = g hσ , is shown in Fig. 4.1. It can be 

seen that the influence of the nonlinear terms is negligible. Considering, S = 0.2h and 

g hσ = , a wave with a steepness of 0.046 can be generated. A comparison of 

simulation with and without the nonlinear free surface terms is shown in Fig. 4.2. The 

nonlinear characteristics of the wave, i.e., steep crest and shallow trough, are clearly 

visible. A comparison of the simulation using the present methodology with that of Wu 

and Eatock Taylor (1995) is shown in Fig. 4.3. The number of nodes used in the present 

simulation is 236 and 13 along the x and y directions, respectively. Wu and Eatock Taylor 

(1995) adopted 1320 nodes along the x direction and 32 nodes along the y direction for 

their study. 

4.2.2. Mesh Independent Study 

Mesh convergence criteria can be deduced for fully nonlinear waves by superimposing 

the wave time history at a fixed location for different meshes with an increase in the 
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number of nodes on the free surface. Such a convergence study has been carried out for 

the wave generation problem with a steepness of 0.046. The mesh convergence is 

examined with the number of free surface nodes taken as 117, 194, 235 and 309, which 

correspond to 15, 25, 30 and 40 nodes per wavelength. The free surface elevation is 

presented in Fig. 4.4a. It can be observed that the profiles obtained using 25 and 30 nodes 

per wavelength tends to converge. Hence, it may be said that a mesh independent solution 

could be obtained for mesh with above 25 nodes per wavelength. Similarly for the 

temporal resolution, a mesh independent solution has been carried out for time steps of 

T/15, T/30, T/40 and T/50. It is observed from Fig. 4.4b that the mesh tends to converge 

for time steps greater than T/40.The maximum and minimum Courant numbers adopted 

for the above simulation are 0.4 and 0.007 respectively. 

4.2.3. Simulation of Medium Steep Waves 

Four different velocity calculation methods, discussed in the previous chapter were used 

to simulate a regular wave of steepness (H/λ) 0.03 in a tank of length 40m. The water 

depth is 1m. The number of nodes used in the horizontal and vertical directions is 416 

(corresponding to 30 nodes per wavelength) and 13, respectively. The stroke of the wave 

paddle is 0.025m and the circular wave frequency is 1.45 g h . No smoothing/regridding 

strategy has been adopted for the simulation while using the CS, LS and MFD 

methodologies. The need for smoothing/regridding in the context of the simulation of 

nonlinear waves is discussed in the next section. The free surface profile at 20s along the 

length of the tank using the three different methodologies (CS, LS, MFD) are shown in 

Fig. 4.5. It is observed that the simulation breaks down at 3.16s while adopting GP 

method. Hence, the smoothing and regridding were done after 10 time steps by increasing 



 71

the number of nodes in horizontal direction to 1101 and in vertical direction to 21. Even 

after adopting smoothing and regridding, the simulation is observed to break down at 

10.4s. Due to frequent smoothing and regridding, a small damping in amplitude has been 

noticed. The time series at 12m from the wave paddle is depicted in Fig. 4.6. The dark 

black line shows the break down of the simulation using GP method. In the same figure, 

an excellent agreement between the other three methods namely, CS, LS and MFD 

schemes can be noticed. The time taken to run the entire computation using CS was 4.939 

min, whereas, LS method took 5.0859 min and MFD took 5.0760 min. The simulation 

was carried out in Pentium(R) CPU 3 GHz. with 1 GB of RAM.  

4.2.4. Simulation of Steep Waves 

In this section, simulation of steep waves is discussed. The stroke of the wave paddle was 

increased to 0.0415m, so as to produce a steepness of 0.05 keeping the remaining 

parameters same as mentioned in the previous section. The free surface elevation near the 

wave paddle is shown in Fig. 4.7. It is clearly seen that the simulation carried out using 

LS and MFD methods shows higher amplitude than the given input near 17 to 20s, 

whereas, CS method does not exhibit this property. The reason is that the x-coordinate of 

the first node at the free surface is set to the position of wave paddle and the horizontal 

gap to the near by node increases with an increase in time due to the Lagrangian motion 

characteristics. Hence, in the case of nonlinear waves, as the steepness increases, due to 

mass transport, the node movement quickly leads to instability of the mesh. This 

phenomenon is shown by considering a snap shot of the node locations near the wave 

paddle during initial period (Fig. 4.8a) and after certain time steps (Fig. 4.8b). The figure 

shows an increase in nodal spacing near the wave paddle. This is a common phenomenon 
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encountered near the paddle during the generation of highly nonlinear waves. Hence, the 

calculation of velocity (by LS or MFD) leads to inaccurate free surface estimation, 

whereas, the CS method fits a curve through these nodes to estimate the velocity which 

overcomes the difficulties that are faced by the other methods. To avoid the instability 

posed by other methods, the number of nodes has to be increased in the entire domain.  

Another possibility, as suggested by Steinhagen (2001), is the dynamic inclusion of the 

new nodes whenever the spacing is greater than twice the initial grid spacing. The new 

node values such as velocity potential and velocities are evaluated using linear 

interpolation based on the neighbouring node details. Physically, this is correct in the 

linear approximation but it again leads to instability near the wave paddle. Hence, a local 

smoothing scheme is suggested. Instead of this technique, in the present study, the initial 

number of nodes is increased. If the number of nodes is more, collision of nodes takes 

place and hence the mesh has to be regridded/ smoothed after certain time steps. 

Consequently, the energy loss accumulates. This also should be taken care while 

considering the increase of number of nodes in horizontal direction. Thus, the simulation 

was repeated considering the number of nodes in the horizontal direction as 825 

(corresponding to 60 nodes per wavelength) while using LS and MFD methods. In usual 

practice, the regridding is not highly sensitive and depends on the frequency of the 

waves. However, for the present case, this is not required. In general, for the simulation 

of steep nonlinear waves, regridding can be adopted at every 20 to 70 time steps 

depending upon the wave frequency. After increasing the number of nodes, the 

simulation was successful as depicted in Fig. 4.9. The simulation was later carried out by 

increasing the stroke of the wave paddle to 0.0572m such that the generated wave has a 

steepness of about 0.07. For this test case, the mesh was regridded at every 50 time steps 
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in all the methodologies. The time history at 12m from the wave paddle is shown in Fig. 

4.10 for three velocity calculation methods. The LS and MFD methods yielded exactly 

same results, whereas, CS method shows a phase shift due to the fact that as the wave 

steepness increases, the CS method based on the neighboring x-coordinates along the free 

surface predicts a very smoothened first derivatives, leading to loss of information 

(filtered high frequency components in steep nonlinear waves). 

The GP method for the above two cases, breaks down after 10s. Considering the 

computational aspect of the simulation for this case, the MFD took 26.7318 min., 

whereas, LS method and CS method took 26.6659 min. and 26.1508 min., respectively. 

This clearly shows that all the three methods require similar computational performances. 

4.2.5. Simulation of Solitary Waves 

The comparison of the different velocity calculation techniques for the simulation of 

solitary waves is carried out. The solitary wave is generated by using the wave paddle 

motion given by Goring (1979), as detailed in Appendix C, with the suitable modification 

suggested by Grilli and Svedsen (1990) to truncate the initial motion of the infinitely long 

solitary waves. First, the simulation is carried out for a small steep wave of 0.1. The 

steepness in the case of shallow water waves is defined as H/h. The length of the tank is 

10m with a water depth of 0.3m. The number of nodes considered is 301 and 13 along the 

horizontal and vertical directions, respectively. No smoothing/regridding has been 

applied. The simulation has been carried out over 20s, which means that the wave 

reflected from the vertical wall and gets re-reflected from the wave paddle. This is clearly 

depicted in Fig. 4.11 which shows three profiles recorded at the centre of the tank (5m). 

All the three methodologies are in excellent agreement. The simulation was then carried 
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out for a solitary wave with steepness of 0.6 maintaining all other parameters same. The 

simulation was carried out only for 5s. The comparison is shown in Fig. 4.12, which 

reveals that LS and MFD methods are in excellent agreement, whereas, a phase shift and 

a reduction in amplitude are clearly visible for CS method. 

4.3. COMPARISON WITH EXPERIMENTAL MEASUREMENTS 

4.3.1. Wave Focusing 

In order to understand the damping mechanism in the velocity calculation methodologies, 

the simulation has been carried out for a long time. For validation of such simulation, 

experimental measurements form the basis for comparison. The various methodologies 

are compared with the experimental results (Clauss and Steinhagen, 1999) for a long time 

wave simulation. The length of the tank was 200 m and water depth was 4 m in the 

experimental setup. The wave paddle motion with a sampling interval of 0.05s is given in 

Fig. 4.13a. The duration of the simulation is 120 s. For the numerical modeling, the 

number of nodes in the horizontal and vertical directions is taken as 501 and 21, 

respectively. The time step adopted is 0.05 s. The corresponding free surface elevation at 

different locations along the tank is shown in Fig. 4.13b. It shows a satisfactory 

agreement between different methodologies with the experimental measurements. The 

focusing point of the transient wave at a very long distance (126.21 m) is also well 

predicted by CS, whereas, LS and MFD methods show a phase delay of 0.2s. 

4.3.2. Cnoidal Waves 

The long time simulation of shallow water waves such as cnoidal wave has been 

attempted using different velocity calculation methodologies. The experimental setup of 
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Jeong (2003) has been considered for validating the numerical simulation. The length of 

the tank was 300 m and water depth was 4 m in the experimental setup. The wave paddle 

motion with a sampling interval of 0.05s is given in Fig. 4.14a. The duration of the 

simulation is 100 s. For the numerical modeling, the number of nodes in the horizontal 

and vertical directions is taken as 801 and 21, respectively. The time step adopted is 0.01 

s. The corresponding free surface elevation at different locations along the tank is shown 

in Fig. 4.14b. Since, the three methodologies produced identical results; only simulation 

from CS approach is plotted. An excellent agreement with the experimental 

measurements even after a long distance can be seen. The numerical results of Jeong 

(2003) using the finite volume method are superposed in the above figure which exhibit a 

phase difference compared with the present numerical results. The velocity vector plot at 

a particular time step along the length of the tank shown in Fig. 4.15 demonstrates a 

return flow under the trough. These velocity vector plots are obtained by solving Eqn. 

(3.19b) from the known velocities at the free surface (CS), side walls and the bottom 

boundary condition at particular time steps.  

To proceed further with the topic of unstructured mesh, the analysis based on time 

integration using RK and ABPC has been made. The above said simulation has been re-

executed using ABPC and the relative error is calculated with respect to the experimental 

measurements for ABPC, RK and Jeong (2003) numerical results. The relative error is 

calculated based on the formula similar to the standing wave problem as,  
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where, ηe is the free surface elevation of the experimental measurements.  The relative 

errors are estimated for the simulated free surface profile (Fig. 4.14b) and are depicted in 

Fig. 4.16. It shows that the relative error for RK and ABM is of the same order, whereas, 

the results of Jeong (2003) exhibit a higher relative error. 

4.3.3. Solitary Waves 

The simulation of solitary waves by prescribing the ‘piston’ wave paddle motion is 

determined from the first order Boussinesq wave theory used by Goring (1979). An 

excellent agreement between simulated solitary waves using the present method with that 

of experimental measurements of Yim et al. (2004) has been observed as shown in Fig. 

4.17. The target wave height is 0.24m in a water depth of 0.8m. This scenario is 

reproduced in the numerical model with 301 nodes in the horizontal direction and 13 

nodes in the vertical direction with a time step of 0.01s assuming the length of the tank as 

40m. The comparison of wave simulation at 15.7m from the wave board has been made 

with the laboratory measurements. 

Experimental study 

In the present study, an experimental investigation was carried out in a 30m long, 2m 

wide wave flume in the Department of Ocean Engineering, IIT Madras. The wave flume 

has a wave paddle at one end and an artificial rubble mound beach is provided at other 

end of the flume to absorb the generated waves. The piston type wave paddle is capable 

of generating regular, random, cnoidal and solitary waves. The desired wave 

characteristic was given to the wave paddle through a personal computer and the same 

computer was used to acquire the signals from the wave gauges through an amplifier. 
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Three conductive type wave gauges were used to measure the wave surface elevation at 

different locations (3m, 8m and 9m from the wave paddle) along the length of the wave 

flume. The wave probes were pre-calibrated by immersing in the water for a known depth 

and measuring the corresponding voltage variation. A constant water depth (h) of 0.8m 

was maintained in the present study. The solitary waves with different height (H) were 

generated covering the wave steepness (H/h) ranging from 0.025 to 0.1. The adopted 

wave characteristics are shown in Table 4.1. The surface elevations measured at the three 

locations were simultaneously acquired at a sampling rate of 0.01s. A typical comparison 

of the present laboratory simulated solitary wave in the wave flume with the numerical 

prediction is shown in Fig. 4.18. It is observed that the initial elevation of the solitary 

wave profile starts below the still water level and the numerical simulation over predicts 

at the peak. The reasons for the above discrepancies are explained below.  

 Initial paddle pullback  

When the driving signal activates the wave paddle to generate a solitary wave, initially 

the paddle pulls back from its initial vertical position. This takes about 20 to 50 seconds 

depending on the target wave characteristics. The above stated pull back of the wave 

paddle results in the lowering of water depth in its vicinity followed by the generation of 

the trough portion of the solitary wave in the wave flume. The trough depth is about 

0.0038m (for H/h=0.1) during the start of wave generation, whereas in the numerical 

simulation, the paddle motion is only towards the forward direction and, hence there are 

no negative elevations. To overcome the discrepancies faced in the laboratory tests, the 

initial water depth is approximated in NWT to match the average depth measured in the 

flume right after pullback of the wave paddle from its vertical position, which is smaller 

than the initial depth. The numerical simulation has been carried out by applying the 
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water depth corrections as measured in the flume and the comparison is found to be in 

good agreement for the wave steepness (H/h) of 0.1 and 0.075 as can be seen in Fig. 4.19 

and Fig. 4.20, respectively.  

 Other sources of discrepancies  

The NWT calculations are based on the assumption of an inviscid fluid and the flow as 

irrotational and therefore, do not include any internal dissipation or friction losses. A 

reduction in wave height in the flume, however, could also occur because of side walls 

and bottom friction. Such effects should be relatively more significant for long waves like 

solitary waves, for which horizontal particle velocities remain large down to the bottom. 

Further, the viscous damping plays a dominant role in the interaction of solitary waves 

with structures (Grilli et al. 2004). However, in the present laboratory simulation, there 

was no structure obstructing the propagation of the solitary waves and hence, the 

decrease in the wave elevation in the experimental simulation might not be due to the 

viscous damping effects. 

Comparison of solitary wave speed 

The theoretical speed (Celerity) of the soliton is given by Boussinesq (1871) 

as ( )BouC g h H= + . The average wave speed obtained from the experimental and 

numerical simulations are normalized with the Boussinesq’s wave speed and are 

presented as a function of H/h in Fig. 4.21.  It is observed that the experimental wave 

speed decreases with an increase in H/h. While, the numerically predicted wave speed 

increases with H/h, the reduction in wave height as observed in experiments is the cause 

for the reduction in the wave speed. 
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4.4. QUANTITATIVE COMPARISON 

4.4.1. General 

It has been found that both the LS and MFD methods produced identical results for a 

wide range of wave steepness. Hence in this section, the results based on CS and LS 

approach are compared with the experimental measurements and the phase differences 

are reported. Clauss and Steinhagen (1999) and Ma et al. (2001b) have made qualitative 

comparison between the laboratory generated and numerical simulated waves, but for the 

best of author’s knowledge none revealed the phase difference quantitatively. 

The comparison of the numerical simulation of breaking waves with that from physical 

measurements carried out by Dommermuth et al. (1988) exhibited a slight deviation 

which was claimed to be due to dissipation of wave energy in the laboratory. The phase 

difference can exist in numerical simulation due to two main reasons, one being the 

dissipation of the wave energy which results in the reduction of wave celerity and the 

other being due to the effect of surface tension that leads to an increase in the wave 

celerity during the laboratory generation. Jensen and Grue (2002) reported a detailed note 

on the phase differences between the numerical and experimental measurements of waves 

with very small slope. The phase difference analysis has been carried out for the 

measurements of wave packets using Fourier analysis, and a difference of 0.01±0.006 rad 

per wavelength was reported between the numerical and physical measurements. The 

numerical simulation of Jensen and Grue (2002) was based on a linear formulation. Apart 

from this analysis, to the best of the author’s knowledge, the comparison between the 

nonlinear wave simulation and the corresponding physical measurement has not been 

reported elsewhere. The analysis can be carried out in the frequency domain and the 
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Fourier analysis only give mean phase angle in the time series. However, the time-

frequency evolution of the phase difference would give meaningful quantification. 

Schlurmann (2004) described the time-frequency methods (namely wavelet 

transformation and Hilbert transformation) in hydrology and hydraulic engineering. 

Balaji et al. (2007) applied time-frequency methods for the prediction of wave groups 

and breaking waves from a data buoy heave response time history. One of the most 

common tools for time- frequency space is the wavelet analysis. By decomposing a time 

series into the time-frequency space, one can determine the time evolution of the 

frequency components in the signal. The details of the wavelet analysis with reference to 

the practical implementation of the algorithms are given in Torrence and Compo (1997). 

It has been pointed out by Torrence and Compo (1997) in many studies that wavelet 

analysis have suffered from an apparent lack of quantitative results and highlighted the 

importance of statistical significance test. In order to examine the comparison between 

two (numerical and experimental) time series with large common power and to evaluate 

the phase relationship in time-frequency space, Cross Wavelet transformation (XWT) is 

adopted, which is constructed from two Continuous Wavelet Transform (CWT). Further, 

from Wavelet coherence (WTC) between the two CWT, one can find significant 

coherence even when the common power is low. A brief overview on wavelet 

transformations is provided in Appendix D. In this section, the analyses are reported both 

qualitatively and quantitatively for numerically simulated (by adopting CS and LS 

approach) and laboratory generated wave elevation time series. 
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4.4.2. Experimental Details 

The experiments were also carried out in the wave Flume at Franzius-Institute, University 

of Hannover, Germany. The flume is 100m long, 2m wide and 4m deep. The water depth 

was adopted as 0.61m. The existing system of water circulation to cool the wave paddle 

to avoid friction between the wave paddle and the side walls was not working 

satisfactorily; thus necessitating the supply of water through an external pipe that leads to 

an increase in water level. An increase in the water level by about 2cm in the flume was 

noticed over a day and hence the measurement of water depth was carried out prior to 

every run. This plays a major role in the numerical simulation. Six numbers of wave 

probes were deployed in the wave flume at distances, 4.849m (WP1), 20.146m (WP2), 

25.136m (WP3), 30.425m (WP4), 40.406m (WP5) and 50.609m (WP6) from the wave 

paddle. The distances were measured using laser distometer. The input to the numerical 

model is from the feedback signal of the wave paddle in the flume. The paddle motion, 

water depth and the location of the measurement of time histories for a particular run are 

important parameters in the experiments that are essential for comparing the results with 

numerical simulation. The generation of regular waves and cnoidal waves have been 

carried out in the flume. A view of the flume is shown in Fig. 4.22. Further, the 

generation of solitary waves was carried out in a glass flume, 24m long, 0.3m wide and 

0.5m deep at University of Wuppertal, Germany. A water depth of 0.2145m for these 

studies was considered. This flume is equipped with a wave paddle driven by a digital 

motor to which signals can be provided with high precision. The view of the flume is 

shown in Fig. 4.23. The wave histories were recorded using Ultrasonic sensors at 

distances of 1.743m and 6.74m from the wave paddle. The PIV measurements of water 

particle velocities were carried out at 3.45m from the paddle using the high Speed CCD 
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camera having the resolution of 256 x256 pixels. The camera is placed at 1.45m (focus) 

from the center of the flume. The minimum focusing distance of the camera is 1m. The 

field of View (FOV) is 0.26 x 0.26m. The sampling interval for recording was 0.002s and 

for the analysis it was 0.004s, such that the mean of the particle in FOV to move at least 

one cell distance to avoid spurious velocities. The PIV setup is shown in Fig. 4.24. 

4.4.3. Regular Waves 

The experiments were carried out to generate a regular wave with a period of 1.92s, and 

two different wave heights, corresponding to wave steepness of 0.01 and 0.047. In the 

numerical modeling, the number of nodes used in the horizontal and vertical directions 

are 1101 and 17, respectively. For the case of CS approach, no regridding was applied, 

whereas, the regridding has been carried out for every 40 time steps while adopting LS 

approach. The time step used for the calculation is 0.02s. The numerical model setup is 

kept constant for all the wave simulations reported in this section, unless and otherwise 

quoted. The comparison of wave surface profile from the experimental measurement and 

the numerical simulation at various locations along the length of the tank for waves with 

a steepness of 0.01 (wave height of 0.04m) is shown in Fig. 4.25. The input paddle 

velocity has been obtained by differentiating the measured paddle displacement, which 

resulted in spurious noises in the signal as can be seen in Fig. 4.25a. The wave surface 

elevation at a distance of 4.849m, 25.136m and 50.609m are shown in Figs. 4.25b, c and 

d, respectively. An excellent comparison between the numerical simulation based on the 

CS and LS approaches and that from experimental measurements (EXP) can be seen. The 

wave spectra for the surface elevation near the paddle (WP1) and far away from the 

paddle (WP6) are depicted in Figs. 4.26a and b. The wavelet power spectra for the 
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experimental measurements at WP1 and WP6 are shown in Figs. 4.26c and d, 

respectively. The measured wave period is found to be close to 1.92s. Edge effects that 

might have influence the analysis is shown as a lighter shade (the values within this 

region are presumably reduced in magnitude due to zero padding). This edge effect is 

called as Cone of Influence (COI). The thick black contour designates the 95% 

confidence contours (energy concentration). In order to reveal the difference between the 

two time histories near to the paddle, the cross wavelet power and phase difference for 

EXP with CS and EXP with LS are shown in Figs. 4.27a and b, respectively. The arrows 

indicate the relative phase difference between the two time series: the arrows pointing to 

the right indicate the in-phase, whereas, the left arrows indicate out-of-phase. The arrows 

pointing downward indicate that the numerical simulation exhibits a phase shift of about 

900 with respect to the experimental measurements. Within the 95% energy 

concentration, the simulated time series is in phase with the experimental observation. 

The quantitative mean phase angle in the XWT for EXP - CS is -2.280 ±1.5710 (± 

indicates error estimated using the circular standard deviation), whereas, for EXP – LS, it 

is -2.490 ±1.4700. The cross wavelet shows the existence of high common power between 

the two time series and, in order to reveal the phase lock behaviour, the wavelet coherent 

transform (WTC) is used. The squared wavelet coherent transform for EXP - CS and 

EXP - LS are shown in Figs. 4.27c and d, respectively. The area of the 95% confidence 

contour is large compared to the cross wavelet power, which shows the intensity of 

covariance irrespective of high common power. Significant wavelet coherence is found to 

exist for the wave period less than 1s. In the region of primary frequency, the time series 

are in-phase as indicated by arrows and scattered elsewhere. The mean phase angle for 

squared WTC of EXP - CS and EXP - LS are -1.820±39.730 and -1.360±37.080, 
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respectively. Similar kind of wavelet analysis has been carried out for all the time series 

of this simulation and only the quantitative results are depicted in Table 4.2.  

The numerical and experimental measurements for a wave of height 0.2m along the 

various locations of the tank are shown in Fig. 4.28. This simulation corresponds to a 

steepness of 0.047. When the distance from the wave paddle increases, the CS approach 

shows a slight phase shift even though, the wave height is maintained constant. 

Qualitative wavelet analysis has been reported for the two time series for this case, one 

near to the paddle and the other far away from the paddle. The power spectra from 

Fourier analysis for the wave surface elevation time histories at 4.895m shows the 

concentration of energy at 0.52Hz and 1.05Hz, due to the existence of nonlinearity (Fig. 

4.29a). The wavelet power spectrum for the experimental measurement is also shown in 

Fig. 4.29b. The XWT for EXP - CS and EXP - LS are shown in Figs. 4.29c and d, 

respectively. For a medium steep wave, the time series of EXP - CS is in-phase at the 

primary period of 1.92s, whereas, a positive phase difference at the secondary mode is 

observed. In the case of EXP - LS, the waves are found to be in-phase within the 95% 

confidence contours. The squared WTC also reveals a similar behavior as shown in Figs. 

4.29e and f. The XWT mean phase angle is -4.950±15.240 and -4.790±2.6780
 for EXP - 

CS and EXP – LS, respectively. A larger error for the CS approach has been noted 

compared to LS approach. The power spectra from Fourier analysis, CWT for 

experimental data, XWT and squared WTC for the time histories far away from the 

paddle are reported in Fig. 4.30. The wave surface elevation simulated with CS approach 

is found to advance compared to the measured wave surface elevation towards the 

direction of propagation. For the CS approach, this is noticed in the wavelet results both 

for primary as well as for secondary mode, whereas, such a difference is noticed only in 
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secondary mode while adopting the LS approach. The quantitative results of this case for 

all the time series are presented in Table 4.3. The phase shift is found to be increased for 

CS approach compared to that for LS approach. This shows that CS approach is unable to 

capture the low period waves due to smooth fitting for the velocity estimation. Moreover, 

the phase angle is not a constant over the length of the tank which may be due to the 

uncertainty in the location of wave probes along the flume for the measurement of the 

wave time history. Probable reason for the small deviation in the lower period may be 

due to the fact that the input signal (paddle displacement) obtained from the paddle for 

the low period must have been polluted by the noisy signal when one differentiate to 

obtain the paddle velocity. 

4.4.4. Cnoidal Waves 

The nonlinearity in a shallow water wave is relatively difficult to model and is of 

practical relevance compared to the regular waves of higher order propagating near the 

coast. Hence, an attempt has been made to understand the performance of the present 

numerical code for the simulation of shallow water waves such as cnoidal and solitary 

waves. In this section, cnoidal wave simulation is discussed and in the next section, the 

aspects of simulation of solitary waves are deliberated. cnoidal waves of different 

characteristics were generated in the laboratory with Ursell parameter of 30, 307 and 41 

referred to as CN1 (H = 0.03m, T = 6.4s), CN2 (H = 0.3m, T = 6.4s) and CN3 (H = 0.2m, 

T = 3.2s), respectively. The wave paddle signal is generated from the cnoidal wave theory 

and obviously the generated profile could not be stable during its propagation due to the 

dispersion of many of the frequency components. A more stable cnoidal wave form could 

be achieved by using the formulation of Goring (1979). Since the main objective of this 
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study is to investigate the physical and numerical aspects of nonlinear wave simulation, a 

simple approach of wave generation using cnoidal wave theory is sought. The input wave 

paddle velocity and the generated wave elevation at a distance of 4.84m, 25.136m and 

50.609m from the wave paddle are depicted in Fig. 4.31. The simulated wave profile 

using the approaches of CS and LS is superposed on the same plots. An excellent 

agreement between both the numerical approaches with the measurements can be seen. 

The frequency spectrum of wave elevation at 50m (Fig. 4.32a) shows the peak period as 

6.4s, however, the spectrum is found to be broad. The corresponding wavelet power 

spectrum for the measurement (Fig. 4.32b) shows that the 95% of energy is concentrated 

within the range of 1.5s to 8.5s, having a peak around 6.4s. The phase angle estimated 

using XWT (Figs. 4.32c and d) shows that in both the cases of CS and LS, the secondary 

mode (near 3s) shows a positive phase shift, whereas, the wave near the primary period is 

in-phase. The squared WTC is also shown in Figs. 4.31e and f and, the quantitative phase 

angle information inside the 95% energy levels is presented in Table 4.4 for all the 

simulated cnoidal profiles. 

The measured wave elevation history for CN2 and the numerical simulation at various 

distances from the paddle are shown in Fig. 4.33. The comparison is found to be 

excellent. The measured and simulated frequency spectra for the wave elevation at 

50.609m are superposed in Fig. 4.34a. The experimental CWT (Fig. 4.34b) shows a peak 

wave period of 6s and the energy spreads over a period varying between 0.5s and 8s. The 

XWT shown in Figs. 4.34c and d, reveal that the simulation with CS approach exhibits a 

phase lag except near the primary period, while, simulation using LS shows a lesser 

phase lag. However, the squared WTC (Figs. 4.34e and f) shows a larger significant 
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coherence for both the approaches of numerical simulation. The quantitative phase lag 

inside the 95% energy level is given in Table 4.5. 

The measured wave elevation and its comparison with the simulation from the two 

numerical approaches for a wave period of 3.2s (CN3) are shown in Fig. 4.35. The 

Fourier spectrum and CWT for the measured wave elevation near the paddle are shown in 

Figs. 4.36a and b. The energy concentration occurs over a period ranging between 0.5s 

and 4s, with a peak at 3.2s. The analyses on XWT and WTC reveal similar observation as 

that for CN2. The mean phase angles in the 95% energy level for all the wave probes 

used in the laboratory investigation are reported in Table 4.6. For small wave steepness, 

the phase difference is found to be small, while for the medium wave steepness, the phase 

difference is larger for CS compared to that for LS approach. 

4.4.5. Solitary Waves and PIV Measurements 

The generation of solitary waves has been carried out at University of Wuppertal, 

Germany. The generation of solitary waves by prescribing the piston type wave paddle 

motion follows from the first order Boussinesq wave theory used by Goring (1979). The 

solitary waves were generated in the wave flume and the surface profile has been 

measured using ultrasonic probe at two locations. The experiments were carried out for 

wave steepness (H/h) between 0.1 and 0.4. The comparison of measured wave elevation 

with the numerical simulation (LS) is shown in Figs. 4.37 (a-d). A slightly broader wave 

profile can be seen in the numerical simulation compared to the measured wave surface 

elevation for waves with smaller steepness. The simulated peak magnitude is also found 

to be higher. For steeper waves, though the wave height remains the same, the width of 

the simulated solitons is wider. This is due to the difference in the displaced mass of the 
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water even though the paddle signal is same. The loss of volume of water is accounted 

for the water flowing backward to the paddle through the gap between the wave paddle 

and the side walls when the paddle is set into motion. As the width of the flume is small, 

this effect is more pronounced. The reason for the wave height remaining unchanged for 

the steeper waves is due to the fact that the paddle stroke is quite fast compared to 

smaller steepness. This feature has been captured using a high speed camera and the 

various snap shots of the water flowing through the gaps are shown in Fig. 4.38. One can 

minimize this effect by adjusting the input signal to generate the target wave height and 

profile using trial and error method. The input signal for the numerical model (i.e., the 

generated signal) and the signal given to the paddle (i.e., tuned signal) to generate a wave 

with specified characteristics are shown in Fig. 4.39 for H/h = 0.1. Since, the incident 

wave profile matches near the paddle and also a good comparison has been achieved at 

the second location, the wavelet analysis is not carried out. The comparison between the 

numerical simulation (CS and LS) and experimental measurements for waves with 

steepness ranging from 0.1 to 0.5 is shown in Fig. 4.40. The number of nodes in the 

horizontal and vertical direction used in the numerical modeling is 601 and 17, 

respectively. An interesting feature noted is discussed below.  

After the propagation of the soliton, the oscillation is below the mean water surface (zero 

level), which once again proves that the water is flowing back through the side of the 

wave paddle after reaching the extreme position of the wave paddle. This eventually 

reduces the trailing waves that should be presented in the solitary wave generation. But, 

attempts are being made by several researchers for the minimization of trailing waves. 

For higher wave steepness, the numerically simulated trailing waves are different from 

the measurement. CS shows a phase difference for steepness above 0.4. In order to reveal 
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the water particle motion, due to which the phase difference exists, PIV measurements 

were carried out.  

MATPIV developed by Sveen (2003) has been used for analysis. The comparison 

between the numerical simulation (LS and CS) and the experimental measurement for 

particle velocity at the crest is shown in Fig. 4.41. The CS simulated particle velocity is 

taken at the crest irrespective of the phase difference. It shows a good comparison for 

velocity magnitudes using LS with that of EXP. The CS shows lower velocity magnitude 

for H/h greater than 0.4. A snapshot of images from the CCD high speed camera at 

various stages before analysis is shown in Fig. 4.42. The spatial velocity information 

using PIV and numerical simulation (LS) for H/h = 0.5 is depicted in Fig. 4.43.  

4.5. UNSTRUCTURED MESH 

4.5.1. General 

The analysis has been carried out to know the possibilities of the spring analogy methods 

in the context of highly nonlinear free surface waves. Two analogies, as discussed in the 

section 3.11, namely vertex and segment methods are used to simulate the nonlinear 

waves. 

To use in segment spring method (Ma and Yan, 2006), ( )2 / 2i jz z heμ
χ

⎡ ⎤+ +⎣ ⎦=  is adopted, where, 

μ = 1.7 and ψ = -1.0. Whereas, for vertex spring method (Sudarsen et al. 2001), χ = 2 

(boundary node), 1 (interior node) with ψ = 0.1 have been used in the Eqn. (3.38). The 

reason for not stiffening at the adjacent layers like in the segment method is that the basic 

principle of vertex method is a smoothing algorithm, so stiffening one layer is sufficient. 

If one needs to stiffen the adjacent layers too, the numerical coefficient used in segment 
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method needs to be changed. For the time integration in the case of unstructured mesh, 

ABPC is used in-order to reduce the computational time. 

4.5.2. Comparison with Structured Mesh: Interpolation Techniques 

The initial validation of the proposed methodologies is carried out by comparing with the 

structured code. The initial mesh is generated using GAMBIT commercial software. The 

simulation using shape function and moving least square (MLS) method when calculating 

vertical velocity has been first analysed for steep waves. The length of the numerical 

wave tank is 40m having a water depth of 1m and simulated steepness corresponds to 

0.082. The wave profile at 15s along the length of the tank is shown in Fig. 4.44 for MLS 

and shape function estimation. Fig. 4.45a shows the wave surface elevation at 5m from 

the wave paddle. There is an over prediction of wave height by using the shape function 

interpolation. This is interpreted qualitatively from the zoomed in view of Fig. 4.45a as 

depicted in Fig. 4.45b. Hence for all the cases considered herein, the MLS method is 

being adopted. 

4.5.3. Comparison with Structured Mesh: Mesh Moving Strategies 

As pointed out in Chapter 2, the mesh moving strategies shows a conflicting report in the 

context of nonlinear free surface simulation. A comparison between the two different 

spring analogies, namely, vertex and segment spring are carried out in this section. To 

carry out this investigation, the input to the wave paddle is kept same as mentioned in 

above sub-section. The simulation using segment and vertex methods are compared with 

the structured mesh. The free surface profile along the length of the tank at 15s after the 

initiation of the motion of the wave paddle is shown in Fig. 4.46a. The time history at 5m 

from the wave paddle is shown in Fig. 4.46b. It shows an excellent agreement. The 
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snapshot of the moved mesh structure is shown in Fig. 4.47. Similar behaviour has been 

noted for different numerical simulation of different wave frequency components. Thus, 

it has been proved that both these methods can be used for the simulation of nonlinear 

free surface waves but one has to test the assumed stiffness before adopting it. The spring 

stiffness given above may be used for wide variety of problems, if one deals with the 

simulation of nonlinear free surface waves interacting with the fixed objects. 

4.5.4. GP Method and its Improvement 

From the forgoing sections, it is revealed that the GP method exhibits poor results for the 

simulation of nonlinear waves, unless the mesh structure is taken care, the details of 

which are discussed below. 

The mesh moving strategy of vertex method has been adopted. The length of the tank (L) 

is 9m and water depth (h) is 0.6m. The stroke of the wave paddle (S) is 0.05h and the 

wave frequency (ω) is 1.5539 g h . The number of elements in the structured mesh was 

chosen as 16000, while, in the unstructured mesh, it was 13598. The initial mesh was 

generated using GAMBIT commercial software. A total number of 200 time steps per 

wave period that corresponds to a sampling interval of 0.005s was adopted for both the 

structured and unstructured mesh simulation. The beach length (Lbeach) and the damping 

frequency of the beach (σb) are assumed to be equal to wavelength and the frequency of 

the incoming wave. Smoothing and regridding have been adopted after every 20 time 

steps. The simulation was carried out over a long time. The time histories near the wave 

paddle and at a distance of 5m from the wave paddle are shown in Figs. 4.48a and b. The 

free surface profile over the entire length of the tank at 25s after the initiation of the 

motion of the wave paddle is shown in Fig. 4.48c. The comparison between the two 
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methods is found to be good. Thus, it is clear that GP method can also be used as a 

velocity calculation technique as used by Wang and Wu (2006) but the quality of the 

mesh has to be considered with utmost care. 

4.5.5. Comparison between Different Velocity Calculation Methods 

In this section, a comparison is made between different velocity calculation techniques 

namely, CS, LS and GP methods. The simulation was carried out for the transient wave 

packets. The length of the tank is 50m with a water depth of 1m. The comparison is 

reported in the Figs. 4.49a and b at two different locations, one near to the paddle 

(12.513m) and the other at the focusing point (31.552m). This is the model scale of the 

experiments reported in section 4.3.1. The comparison shows that CS method is in 

reasonable agreement with the experimental measurements (Clauss and Steinhagen, 

1999), whereas, LS method shows a lag of 0.2s at the focussing point. Further, the GP 

method is found to break down even after smoothing at 40s. For this case, both vertex 

and segment spring methods have yielded identical results and hence, segment spring 

method only reported in the above said simulation. The moved mesh at the focusing point 

is depicted in Fig. 4.50. 

4.6. SUMMARY 

The chapter also provides an in-depth analysis on different velocity calculation methods 

and its comparisons with the existing experimental measurements are reported. Further, a 

series of experiments are conducted for regular, cnoidal and solitary waves and compared 

with the numerical model. The quantitative results are reported for the two different 

methods of velocity calculations with that of experimental measurements by using 

Wavelet analysis. PIV measurements on solitary waves are also reported in detail with 
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the difficulties faced in generating these kinds of extreme waves. The unstructured mesh 

simulations are compared with the structured mesh results and the two different mesh 

moving strategies are analyzed for the simulation of wave-structure interaction problems. 

The improvement in GP method is highlighted in this chapter that has high frequency 

oscillations during simulation. 
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Table 4.1 Tested Solitary Wave Characteristics. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Table 4.2 Wavelet Phase Angle for the Test Case T = 1.92s, H = 0.04m, D = 0.613m (R1). [XWT1 and WTC1: EXP-CS , XWT2 and 
WTC2: EXP-LS , WP1 @ 4.8495m; WP2 @ 20.146m; WP3 @ 25.136m;WP4 @ 30.425m;WP5 @ 40.406m; WP6 @ 
50.609m] 

 

 

 

 

 

No. Wave 
Height(H)

Wave 
Steepness(H/h) 

1. 0.02 0.025 
2. 0.03 0.0375 
3. 0.04 0.05 
4. 0.05 0.0625 
5. 0.06 0.075 
6. 0.08 0.1 

Wavelet WP 1 
(in Deg) 

WP2 
(in Deg) 

WP3 
(in Deg) 

WP4 
(in Deg) 

WP5 
(in Deg) 

WP6 
(in Deg) 

XWT1 0.49±12.20 -2.24±14.22 -2.74±29.03 -1.42±23.44 -1.22±13.58 -4.38±6.33 
WTC1 -0.52±20.6 -2.62±22.42 -5.25±35.60 -1.56±22.03 -2.14±37.51 -0.96±23.05 
XWT2 0.51±12.26 -2.30±13.95 -2.74±28.99 -1.46±23.37 -1.28±13.52 -4.41±6.32 
WTC2 -0.51±19.19 -2.55±24.01 -5.68±37.03 -1.55±22.40 -1.85±38.45 -1.41±24.48 
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Table 4.3 Wavelet Phase Angle for the Test Case T = 1.92s, H = 0.2m, D = 0.621m (R2).[XWT1 and WTC1: EXP-CS , XWT2 and 

WTC2: EXP-LS , WP1 @ 4.8495m; WP2 @ 20.146m; WP3 @ 25.136m;WP4 @ 30.425m;WP5 @ 40.406m; WP6 @ 
50.609m] 

 
 

 

 

 

Table 4.4 Wavelet Phase Angle for the Test Case T = 6.4s, H = 0.03m, D = 0.619m (CN1). [XWT1 and WTC1: EXP-CS , XWT2 and 
WTC2: EXP-LS , WP1 @ 4.8495m; WP2 @ 20.146m; WP3 @ 25.136m;WP4 @ 30.425m;WP5 @ 40.406m; WP6 @ 
50.609m] 

 
 
 
 
 
 
 
 

 
 
 

Wavelet WP 1 
(in Deg) 

WP2 
(in Deg) 

WP3 
(in Deg) 

WP4 
(in Deg) 

WP5 
(in Deg) 

WP6 
(in Deg) 

XWT1 -4.95±15.24 37.12±18.07 47.85±26.45 62.65±30.56 80.34±42.86 89.98±55.87 
WTC1 1.38±26.51 14.81±35.98 30.20±42.56 30.09±51.88 29.96±72.41 37.1±77.24 
XWT2 -4.79±2.678 -3.76±8.10 -1.50±5.21 3.32±7.00 8.91±4.760 9.74±5.51 
WTC2 -2.11±24.05 -0.61±24.12 0.07±22.84 5.85±25.25 5.28±35.32 6.51±38.95 

Wavelet WP 1 
(in Deg) 

WP2 
(in Deg) 

WP3 
(in Deg) 

WP4 
(in Deg) 

WP5 
(in Deg) 

WP6 
(in Deg) 

XWT1 -2.28±1.571 2.18±4.21 1.71±6.057 3.59±1.84 4.40±2.4762 1.05±2.15 
WTC1 -1.82±39.73 5.11±34.09 0.00±28.427 6.25±34.61 -2.68±39.10 3.01±36.58 
XWT2 -2.49±1.470 0.62±2.81 0.28±4.9812 2.05±1.56 2.44±1.8406 -1.40±1.94 
WTC2 -1.36±37.08 4.66±35.38 -1.06±29.00 5.36±32.11 -3.91±39.14 0.96±36.16 
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Table 4.5 Wavelet Phase Angle for the Test Case T = 6.4s, H = 0.3m, D = 0.62m (CN2). [XWT1 and WTC1: EXP-CS , XWT2 and 

WTC2: EXP-LS , WP1 @ 4.8495m; WP2 @ 20.146m; WP3 @ 25.136m;WP4 @ 30.425m;WP5 @ 40.406m; WP6 @ 
50.609m] 

 
 
 

 
 

 

 

Table 4.6 Wavelet Phase Angle for the Test Case T = 3.2s, H = 0.2m, D = 0.621m (CN3). [XWT1 and WTC1: EXP-CS , XWT2 and 
WTC2: EXP-LS , WP1 @ 4.8495m;WP2 @ 20.146m; WP3 @ 25.136m;WP4 @ 30.425m;WP5 @ 40.406m; WP6 @ 
50.609m] 

 
 

 

 

Wavelet WP 1 
(in Deg) 

WP2 
(in Deg) 

WP3 
(in Deg) 

WP4 
(in Deg) 

WP5 
(in Deg) 

WP6 
(in Deg) 

XWT1 6.4±5.62 12.11 ±21.84 13.70 ±17.50 19.43±17.30 19.86±19.04 19.72 ±17.91 
WTC1 8.04±25.6 8.88 ±26.83 10.91 ±30.77 13.30±32.74 14.44±33.44 12.87±33.19 
XWT2 1.59±3.37 2.16±11.68 2.14±9.26 3.59±7.56 2.95±4.72 0.57±4.08 
WTC2 4.29±21.4 2.07±22.60 3.36±26.22 3.59±27.06 2.60±25.94 1.06±25.95 

Wavelet WP 1 
(in Deg) 

WP2 
(in Deg) 

WP3 
(in Deg) 

WP4 
(in Deg) 

WP5 
(in Deg) 

WP6 
(in Deg) 

XWT1 3.19±4.42 11.67±7.87 12.00±6.52 15.95±9.9 20.43±12.30 16.39±9.32 
WTC1 1.09±20.94 7.97±21.95 9.65±23.36 10.67±24.69 14.3±34.87 8.61±28.09 
XWT2 0.12±3.14 1.49±2.85 0.76±1.57 5.71±4.68 2.60±3.12 -0.54±2.85 
WTC2 0.21±20.35 0.43±18.84 0.79±20.93 3.68±21.50 1.93±29.66 -1.00±26.03 
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Fig. 4.1 Comparison between Nonlinear and Linear Wave Simulation at 12m 
from the Wave Paddle for a Wave Steepness, H/λ = 0.0036  
[  Nonlinear Wave; ♦♦♦ Linear Wave] 

 
 

 

Fig. 4.2 Comparison between Nonlinear and Linear Wave Simulation at 
12m from the Wave Paddle for a Wave Steepness, H/λ = 0.046  
[  Nonlinear Wave; ♦♦♦ Linear Wave] 
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Fig. 4.3 Free Surface Elevation at 12m from the Wave Paddle for a Wave 
Steepness,  H/λ = 0.046 
[♦♦♦ Wu and Eatock Taylor (1995);   Present Simulation] 

 
 

 

Fig. 4.4a Mesh Convergence for the Spatial Resolution for 15, 25, 30 and 40 
Nodes per Wavelength  
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Fig. 4.4b Mesh Convergence for the Temporal Resolution of 15, 30, 40 and 50 
Time Steps per Wave Period  
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Fig. 4.5 Free Surface Profile at 20s along the Length of the Tank  
[------ LS;  CS; -−-−-−-− MFD] 

 
 

 

 

 

 

Fig. 4.6 Time History at 12m from the Wave Paddle  
[------ LS;  CS; -−-−-−-− MFD;  GP] 
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Fig. 4.7 Free Surface Elevation near the Wave Paddle showing Instability 
after 17s [------ LS;   CS; -−-−-−-− MFD] 

 

Fig. 4.8a Mesh Structure near the Wave Paddle at 2s 
 

 

Fig. 4.8b Mesh Structure near the Wave Paddle showing Node Movement 
around 18s 
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Fig. 4.9 Free Surface Elevation near the Wave Paddle after Increasing the 
Number of Nodes to 825 [------ LS;   CS; -−-−-−-− MFD] 
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Fig. 4.10 Free Surface Elevation along the Length of the Tank for a Wave 
Steepness of 0.7 [------ LS;   CS; -−-−-−-− MFD] 
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Fig. 4.11 Time History at the Center of the Tank [------ LS;  CS; -−-−- MFD] 
  
 

 

 

 

 

Fig. 4.12 Time History at a) 2m and b) 5m from the Wave Paddle [------ LS; 
 CS; -−-−-−-− MFD] 
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Fig. 4.13a Paddle Displacement for the Simulation of Transient Wave 
Packet 
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Fig. 4.13b Time History Comparison at Various Locations [•••••Experiments  
(Clauss and Steinhagen, 1999); ------ LS;  CS; -−-−-−-− MFD] 
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Fig. 4.14a Paddle Displacement for the Simulation of Cnoidal Waves 
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Fig. 4.14b Time History Comparison at Various Locations [••••• Experiments  
(Jeong, 2003); ------ Numerical (Jeong, 2003);  CS] 
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Fig. 4.14b Contd. 
 

 

 

 

 

 

 

 

Fig. 4.15 Velocity Vector Plot along the Length of the Tank at 80s 
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Fig. 4.16 Relative Error along the Length of the Tank 
 
 

 

 

 

Fig. 4.17 Comparison of the Numerical Simulation of Free Surface Profile 
at 15.7m from the Wave Paddle with the Experimental 
Measurements (Yim et al. 2004) for a Wave Height of 0.24m in a 
0.8m Water Depth 

t (s) 

 η(m) 

0 40 80 120 160
Length of the tank(m)

0

0.4

0.8

1.2

1.6

2
R

el
at

iv
e 

Er
ro

r
Present Method RK
Jeong(2002)
Present Method ABM



 107

 

 

Fig. 4.18 Comparison of Numerical Simulation with Present 
Experimental Measurements at 3m for H/h=0.1                     
[••••••• Experiments;  Numerical] 

 
 

 

 

Fig. 4.19 Comparison of Numerical Simulation with Experimental 
Measurements with Corrected Water Depth at Various Distances 
of 3m, 8m and 9m from the Wave Paddle for H/h = 0.1            
[••••••• Experiments;  Numerical] 
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Fig. 4.20 Comparison of Numerical Simulation with Experimental 
Measurements with Corrected Water Depth at Various Distances of 
3m, 8m and 9m from the Wave Paddle for H/h = 0.075              
[••••••• –Experiments;  Numerical] 
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Fig. 4.21 Variation of Wave Speed with respect to Wave Steepness 
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Fig. 4.22 View of the Flume at University of Hannover, Germany 
 

 

          

Fig. 4.23 View Showing the Glass Flume at University of Wuppertal, 
Germany 
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Fig. 4.24 PIV Set-up and Light Settings 
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(a) Input Velocity obtained from the Paddle Displacement 
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(b) Wave Surface Elevation at 4.849m
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(c) Wave Surface Elevation at 25.136m 
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(d) Wave Surface Elevation at 50.609m 

 
Fig. 4.25 Input Velocity and Time History Comparisons to Simulate a 

Regular Wave with a Steepness of 0.01 [R1: ••••••• EXP; ----- LS; 
 CS] 
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(a) Wave Power Spectrum for WP1 

 
(b) Wave Power Spectrum for WP6 

  
(c) Wavelet Power for EXP at WP1 

 
(d) Wavelet Power for EXP at WP6 

 

Fig. 4.26 Fourier and Wavelet Spectrum for R1 [WP1 @ 4.895m; WP6 @ 
50.609m] 
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(a) XWT between EXP-CS 

 
(b) XWT between EXP-LS 

 
(c) WTC between EXP-CS (d) WTC between EXP-LS 

 
 

Fig. 4.27 Cross Wavelet Transform and Wavelet Coherence between 
Numerical Approaches and Experiment for the Time History near 
to the Wave Paddle [R1] 
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(a) Input Velocity obtained from the Paddle Displacement 
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(b) Wave Surface Elevation at 4.849m
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(c) Wave Surface Elevation at 25.136m 
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(d) Wave Surface Elevation at 50.609m 

 
Fig. 4.28 Input Velocity and Time History Comparisons to Simulate a 

Regular Wave with a Steepness of 0.047 [R2: ••••••• EXP; ----- LS; 
 CS] 
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(a) Wave Power Spectra (b) Wavelet Power for EXP 
 

  
(c) XWT between EXP-CS (d) XWT between EXP-LS 

 

  
(e) WTC between EXP-CS (f) WTC between EXP-LS 

 
 

Fig.4.29 Fourier and Wavelet Analysis for Time History near the Wave 
Paddle [R2] 
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(a) Wave Power Spectra 
 

(b) Wavelet Power for EXP 
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Fig. 4.30 Fourier and Wavelet Analysis for the Time History far away from 
the Paddle [R2] 
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(b) Wave Surface Elevation at 4.849m
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(c) Wave Surface Elevation at 25.136m 
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Fig. 4.31d Wave Surface Elevation at 50.609m 

 
Fig. 4.31 Input Velocity and Time Histories Comparison to Simulate a 

Cnoidal Wave of Ursell Parameter 30 [CN1: ••••••• EXP; ----- LS; 
 CS] 
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Fig. 4.32 Fourier and Wavelet Analysis for Time History far away from the 
Paddle [CN1] 
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(d) Wave Surface Elevation 50.609m 

 
Fig. 4.33 Input Velocity and Time History Comparison to Simulate a Cnoidal 

Wave of Ursell Number 307 [CN2: ••••••• EXP; ----- LS;  CS] 
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Fig. 4.34 Fourier and Wavelet Analysis for the Time History far away from 

the Paddle [CN2] 
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(b) Wave Surface Elevation at 4.849m 
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(c) Wave Surface Elevation at 25.136m 
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(d) Wave Surface Elevation at 50.609m 

 
Fig. 4.35 Input Velocity and Time Histories Comparison to Simulate a 

Cnoidal Wave of Ursell Number 41 [CN3: ••••••• EXP; ----- LS; 
 CS] 
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Fig. 4.36 Fourier and Wavelet Spectrum for Time History near to the Paddle 
[CN3] 
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Fig. 4.37 Comparison of Time Histories for Solitary Waves [••••••• EXP; 
 Numerical] 
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Fig. 4.38 Snap Shots of the Water Flowing through the Side Walls 
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Fig. 4.39 Generated Signal [ ] and the Tuned Signal [•••••••] to the Wave 
Paddle to Generate the same Wave Height [H/h = 0.1] 
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Fig. 4.40 Comparison of Time Histories for Solitary Waves with Modified 
Input Signal [••••••• EXP; ----- LS;  CS] 
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Fig. 4.41 Velocity Comparison at the Crest of the Solitary Waves for Various 
H/h Ratio [••• Experiments; οοο LS; ΔΔΔ CS] 
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                 (a) Frame No. 170        (b) Frame No. 200 

                                           

               (c) Frame No. 270        (d) Frame No. 300 

                                           

              (d) Frame No. 370         (e) Frame No. 500 

Fig. 4.42 Snapshots of the Image from CCD High Speed Camera before 
Processing [Sampling Interval is 2ms] 
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Fig. 4.43 Spatial Velocity Information of Solitary Waves obtained from PIV 
Measurement (Top) and Numerical Simulation (Bottom) for H/h = 
0.5 
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Fig. 4.44 Wave Profile at 15s along the Length of the Tank [••••••• Structured 
Mesh;  MLS; ------ Shape Function] 
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Fig. 4.45a Wave Time History at 5m [•••••••••Structured Mesh;  MLS; ---
----- Shape Function] 
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Fig. 4.45b Zoomed in View of Fig. 4. 45a 
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Fig. 4.46a Free Surface Profile along the Length of the Tank at 15s for 
Different Mesh Moving Strategies 
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Fig. 4.46b Time Histories at 5m from the Wave Paddle for Different Mesh 
Moving Strategies 

 

 

 

 

 

 

 

 
Fig. 4.47 Snapshot of the Mesh Movement using Vertex Method at 10s 
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 (a) Time History of Free Surface Profile near the Wave Paddle 

 

 

 

 

 

 

(b) Time History of Free Surface Profile a 5m from the Wave Paddle 

 

 

(c) Free Surface Profile along the Length of the Tank at 25s 

Fig. 4.48 Comparison between Structured and Unstructured Code for a 
Stroke of the Wave Paddle, 0.05h [•••••••Unstructured;  
Structured] 
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(a) Comparison at 12.513m from the Wave Paddle 
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(b) Comparison at the Focusing Point (without experimental measurements) 

Fig. 4.49 Time History Comparison using Different Velocity Calculation 
Methods for Transient Wave Packet Simulation 
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 Fig. 4.50 Moved Mesh at the Focusing Point [Segment Method] 
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CHAPTER 5 

APPLICATIONS OF NONLINEAR WAVE SIMULATION 

5.1. GENERAL 

In this chapter, the applications of the developed model for various wave-structure 

interaction problems are investigated. Two typical experimental results available in 

the literature are used to test the applicability of the present model [based on CS and 

LS as the velocity calculation methods] to the wave propagation problem. The model 

is further extended to the propagation of the solitary waves over the continental shelf 

and its interaction with a vertical wall. A typical test for the unstructured mesh 

implementation to a surface piercing structure and a submerged cylinder near the free 

surface are investigated. The nonlinear wave interaction with structure itself is a topic 

of intense research and, hence, a detailed investigation on a particular topic is beyond 

the scope of the present research work. The last section of this chapter shows an in-

depth analysis on the sloshing waves generated by two types of excitatory motion, 

viz., horizontal and vertical excitations corresponding to the sway and heave motion 

of a ship.  

5.2 WAVE PROPAGATION MODELLING 

5.2.1 General 

The accurate description of wave nonlinearity and wave dispersive characteristics are 

essential since, the dispersive character of free higher harmonics is a major factor i.e, 

the amount of energy transferred between the harmonics. When the wave form 

propagates over submerged obstacle, the leeside of the obstacle is in relatively deep 

water region. Hence, nonlinearity tends to become weak leading to the non-existence 
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of bound waves (nonlinear distortion of the long waves). Drastic changes in the wave 

form takes place due to the higher harmonics that travel with different phases. Thus, 

predicting the above said phenomena proves to be a classical case study to test the 

applicability of the numerical model for wave–propagation models. 

5.6.2. Interaction with Submerged Bar I 

The interaction of small steep waves with a submerged bar was dealt by Beji and 

Battjes (1993, 1994) both numerically and experimentally. It was concluded that 

when the dispersion terms in the Boussinesq equation were not properly modelled, the 

waveform was poorly predicted. The experimental setup is shown in Fig. 5.1. The 

same domain is numerically modeled in the present study with 1101 nodes in the 

horizontal direction and 12 nodes in the vertical direction. A regular progressive wave 

of period 2 s and height of 0.02 m is generated by the wave paddle. The time step 

adopted is 0.02 s. The comparison of the free surface elevation with the experimental 

data at different locations over the up-slope as well as over the downward slope (x = 

10.5m to 17.3m, where x is measured from the wave board) are shown in Fig. 5.2. It 

shows a reasonable agreement between the numerical simulation and the experimental 

results. On the upstream side when the wave runs over, the waves become steeper due 

to shoaling, the behaviour of which is simulated well. At the end of the downward 

slope, a comparison between numerical simulation and experimental results exhibit 

slight deviations. The reason for this deviation is that over the downward slope, the 

transfer of wave energy between different frequency components is greater, which 

eventually results in turbulence. The overestimation of trough level (Fig. 5.2 f) was 

also noticed by the numerical model of Casulli (1999), which includes viscous and 

non hydrostatic pressure but neglects the effect of turbulence. The snapshot of the 
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mesh configuration at a particular time step near the trapezoidal section is shown in 

Fig. 5.3. 

5.6.3. Interaction with Submerged Bar II 

The experimental setup consisting of a tank of length 65m and water depth of 0.5m 

with a submerged bar of Ohyama et al. (1995) is shown in Fig. 5.4. The bar is placed 

at 28.3m from the wave board. The locations of the wave gauges are also shown. The 

same setup is reproduced in the numerical model by using the structured FEM mesh 

with the number of nodes in the horizontal and vertical direction as 1700 and 15 

respectively. This numerical setup is used to carry out for all the test cases. The 

characteristics of the regular waves adopted for the study are shown in Table. 5.1.  

The free surface profile over the length of the tank near the submerged bar along with 

the moving mesh configuration is shown in Fig. 5.5. The spatial evolution showing 

drastic change in the wave form is clearly visible compared to the long wave profile 

before the bar. Cases A and B correspond to the short and smaller waves and case C 

and D represent the higher wave heights. The comparison between the experimental 

measurement and numerical computation is shown in Fig. 5.6. The left side of the 

figure shows the comparison at station 3 and the right side of the figure shows the 

comparison at station 5. Considering cases A and B at station 3, the comparison is in 

good agreement with the experimental measurements. Behind the submerged bar, in 

the region of dispersive wave field, the agreement is quite satisfactory, however, a 

slight phase shift is noticed. Considering the steep wave cases i.e., cases C and D, at 

station 3, a wiggling tail is seen both in experiments and numerical simulation. This is 

similar to the splitting of solitary waves as studied in detail using the present model in 
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the next section. The numerical simulation is in good agreement but there is a slight 

reduction in wave heights over the bar. However, behind the bar, slight discrepancy 

between the numerical results and that of the experimental results of Ohyama et al. 

(1995) is observed, which may be due to the disadvantage in using CS as a velocity 

calculation method. Hence, the LS method was applied for the present problem. The 

same mesh density as used earlier was applied. No smoothing/ regridding of nodes on 

the free surface are carried out even after adopting the LS method. The computed 

results are incorporated in the same figure. The results show a good agreement with 

the measured results and furthermore, slight phase shift that was encountered behind 

the bar using the CS approach is absent using this method of simulation. However, 

still in the simulation, some minor changes in the wave form is noticed that may be 

due to the viscous effect being predominant during the wave interaction with the bar 

in the experiments. The results given by Shen et al. (2004) using the VOF method 

with the inclusion of turbulence effect reveals that their model has not predicted well 

at station 5 and hence had claimed room for further improvement in their viscous 

code. This also justifies the well known fact that the potential flow assumption is a 

better approximation in numerical modelling which proves to be good in dealing with 

wave-structure interaction problems.  

5.3 SOLITARY WAVES AND ITS INTERACTION 

5.3.1 Split-up of Solitary Waves 

The propagation of a solitary wave over an uneven topography has been numerically 

simulated in a flume of length 300m with a water depth of 0.5m. An initial condition 
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of the soliary wave profile is assumed using the relationship of Westhuis (2001) given 

as below, 

0 0 215 1 18( x, ) . sec h( . x )η =  (5.1)

The above equation generates a wave height of 0.1m corresponding to a wave 

steepness (H/h) of 0.2. Initially, the water surface elevation was simulated over a 

constant water depth in order to validate the results of the Boussinesq theory. The 

comparison is shown in Fig. 5.7. The wave profile captured at different time steps 

during propagation is also shown in Fig. 5.8. The test was followed by allowing the 

same wave profile to propagate over a slope that starts at 30m and ends at 40m from 

the source point. In order to study the splitting phenomena of solitary waves over 

slopes, the simulation was carried out in a water depth, h of 0.5m and allowed to 

propagate into a water depth, h0 of 0.45m.The tests were repeated for different h0 of 

0.4m, 0.35m, 0.3m and 0.25m. As the wave propagates over a lesser depth beyond the 

slope, the height of the solitary wave increases and then disintegrates into two or more 

solitons depending on the water depth on the shoreward side of the slope. During this 

process, the wave transmission is predominant than the reflection from the bottom 

topography. The split-up into three solitons is visible when the wave propagates over 

the water depth of 0.25m considered in the study (Fig. 5.9). The solitary wave reduces 

its speed due to the decrease in water depth leading to the splitting up into solitons at 

a particular time step, t =119s as can be seen in Fig. 5.10. Further, it is seen that 

although the initiation of the splitting of the solitons takes place, it gets amplified as 

the shoreward depth (h0) decreases. In order to verify whether the split solitons also 

behave as solitary waves, the wave height and the speed of the solitons was compared 

with that of the analytical solution of the Boussinesq model. The comparison shows a 
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good agreement as inferred from Table 5.2. This particular application shows the 

robustness of the present model, through which the possibility of the splitting of a 

single solitary into three solitons is demonstrated, while in BEM it is able to split only 

upto two solitons for the test cases shown above as reported by Van Daalen et al. 

(1997). 

5.3.2 Propagation of Solitary Wave over Step 

The wave flume considered herein is 50m long and the water depth is 0.2m.  The 

simulation of solitary wave for the present problem is governed by the theory of 

Goring (1979) as described in Chapter 3. The vertical step leading to a sudden 

decrease in water depth starts at 12m from the wave paddle. The locations of the 

numerical wave gauges for the present setup are shown in Fig. 5.11. The initial mesh 

discretisation for a typical case is shown in Fig. 5.12. The simulation is carried out for 

three different relative obstacle height (b/h = 0.33, 0.4 and 0.5, where, b is the 

obstacle height), thus ensuring that b/h is less than 0.5, the conditions for which the 

present model holds good. In the event b/h exceeds 0.5, vortices play a major role and 

the wave steepness would become high closer to its critical value. It should be noted 

that in this study, regridding or smoothing has not been adopted. The number of nodes 

in the horizontal direction is 601, whereas, in the vertical direction, it is 11. The time 

step adopted is 0.01s. The transmission and reflection coefficients have been 

estimated and compared with the experimental measurements (Seabra-Santos et al. 

1987) and first order shallow water theory based on Germain (1984) and Kabbaj 

(1985). Lin (2004) quoted that the transmission and reflection coefficients (Kt and Kr) 

based on the energy flux are more appropriate than using the conventional method for 

solitary wave reported by Seabra-Santos et al. (1987). However, in this work, in order 
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to compare with the experimental measurements, conventional method of finding Kr 

(= Hr/Hi) and Kt (= Htj/Hi) is followed. The transmission coefficient for the three 

different obstacles of different heights is shown in Fig. 5.13. The dashed vertical line 

shows the breaking limit. It can be seen that Kt based on the present method is in good 

agreement with the experimental measurements, while the first order shallow water 

theory over predicts Kt. The dependence of Kt on wave steepness (Hi/h) in the 

experimental measurements is due to the presence of viscous damping as quoted by 

Seabra-Santos et al. (1987). The reflection coefficient for different obstacles is shown 

in Fig. 5.14. The experimental data is provided only for b/h >=0.5. The comparison 

with the experimental measurements for b/h = 0.5 is found to be good as can be seen 

in Fig. 5.14c. The reflection coefficient is found to depend on the incident wave 

steepness (Hi/h). The first order shallow water theory under predicts Kr. It was 

claimed by Seabra-Santos et al. (1987) that the above said variation was due to the 

formation of vortices near the step being dominant as wave steepness increases. It is 

felt that this may not be true as the present model which is based on inviscid flow 

theory also exhibit a similar trend in its variation. Hence, the probable reason may be 

due to the fact that the transmitted energy is predominant than the reflected energy as 

the steepness increases. 

5.3.3 Propagation of Solitary Wave over Smooth Slope 

The solitary wave over a water depth of 0.2m was then allowed to propagate over 

different slopes over an obstacle of height 0.1m into a water depth, h0 of 0.1m. Instead 

of having sharp corners over the slope, it is approximated as a half sinusoidal profile 

i.e., bsin(0.5πx/l), where l is the horizontal length of the slope. It can also be noted 

that in real field situation, presence of sharp corners over the slope is rare. If there are 
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sharp corners, vortices would exist, while, the present model is based on inviscid 

theory. Hence, the result produced by the numerical model is practically valid. The 

tested slopes are 1:10, 1:20, 1:40 and 1:50 that would correspond to l of 1m, 2m, 4m 

and 5m, respectively. The simulation is carried out for different incident wave 

steepness and for different slopes. In order to show the reflection and transmission 

characteristics with respect to slope at two different locations, the wave profile, one 

near to the slope and the other at the reduced water depth for the incident wave 

steepness (H/h) of 0.215, are shown in Fig. 5.15a and Fig. 5.15b, respectively. It can 

be noted that the first transmitted wave is in phase with the incident wave and shows 

an increase in amplitude as the slope becomes flatter, while, there is a phase shift and 

decrease in amplitude of the second transmitted profile as the slope becomes flatter. 

This is due to the fact that for the steeper slope, the split up or fission process occurs 

faster than that for the flat slope which can be seen in Fig. 5.15d. The reflected wave 

decreases as the slope becomes flatter as can be seen in Fig. 5.15c. Thus, when the 

solitary wave enters the flatter continental slope, the reflection become less, whereas, 

the transmission is large compared to when it propagates over a steep slope. 

5.3.4 Solitary Wave Interaction with Vertical Wall 

In order to understand the interaction of solitary wave with vertical wall, the tests 

were carried out with a wall positioned at 10m from the wave board in a constant 

water depth of 0.3m. The run up and the forces on the vertical wall are analysed. The 

simulation was carried out for relative wave steepness, (Hi/h) varying between 0.1 and 

0.6. The number of grid nodes in horizontal and vertical directions are considered as 

301 and 13, respectively. The time step adopted is 0.01s. The comparison of the 

results for run up (R) from the present simulation with that of Fenton and Rienecker 
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(1982) which is based on Fourier method is shown in Fig. 5.16a. The comparison is 

found to be good for the waves with steepness ranging between 0.1 and 0.4. For 

waves with higher steepness, the run-up prediction is found to be higher than that of 

Fourier method. In the present computation for high steepness, the waves are not truly 

solitary type due to an increase in the trailing waves. In the Fourier method, this may 

not be replicated in the absence of higher order terms. The comparison between the 

maximum horizontal forces using the present method with that of second order 

empirical results (Fig. 5.17) is found to be good. 

There have been conflicting reports concerning the shape of the wave profile after 

reflection. The numerical model from Chan and Street (1970) and second order 

analytical results from Byatt-Smith (1971) claimed that the wave remains unchanged. 

Similar conclusion has been drawn from the third-order results of Su and Mirie (1980) 

but it has been reported that a third order asymmetric about the crest, part of which 

appeared as dispersive trailing waves. While, Maxworthy (1976) found 

experimentally that the reflected wave assumes a shape that is clearly steeper than that 

of the incoming wave, and moves faster. Fenton and Rienecker (1982) noticed a 

reduction in wave height and the formation of trough on the reflected wave, with a 

marked increase in its celerity. In the present simulation, for small steepness, the 

reflected wave shows a reduction in its height (Fig. 5.18a), but for steep waves, the 

reduction in the crest height as well as the formation of trough (Fig. 5.18 (b-e)) is 

noticed following the observation of Fenton and Rienecker (1982). The reason for an 

increase in celerity as quoted by Fenton and Rienecker (1982) is due to the formation 

of trough, thus, the effective wave height increases. But, it has been unable to explain 

the above said phenomenon for the low steepness when trough is absent. This reason 
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is explained based on the continuity of flow condition written in terms of the 

horizontal water particle velocity (u) of the wave multiplied by the water depth (h), 

(uh)i = (uh)r (5.2)

where, i and r represent incident wave and reflected wave, respectively. Based on 

long wave theory, 

Cu
h
η

=
 (5.3)

where, C is Celerity. Substituting Eqn. (5.3) in Eqn. (5.2) leads to, 

( ) ( )i rC Cη η=  (5.4)

where,. C = √(gh) Thus, as per continuity condition, when the wave elevation 

decreases, the celerity should increase, which explains the reason for an increase in 

the wave celerity with a lesser steepness as well as this holds good even for the high 

steep waves. The increase in celerity (ΔC) and difference in wave elevation of the 

incident and reflected wave (Δη) with respect to wave steepness is depicted in Figs. 

5.19a and b, respectively. The comparison with the cubic fit as suggested by Fenton 

and Rienecker (1982) shows a good agreement. 

The pressure time history at the free surface and at the bottom of the vertical wall for 

different steepness is shown in Figs. 5.20a and b, respectively. The nonlinearity in 

terms of double peak is predominant for both the location under consideration. This 

shows the existence of nonlinearity across the entire depth, as it should be for the 

shallow water waves. Moreover, for higher steepness (H/h = 0.55), it shows that the 

simulation breaks down, which is due to the crossing of the nodal points. This 

particular effect can be explained by the fact that the pressure becomes zero and 
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eventually the water falls from the free surface suddenly, i.e, the wave breaking takes 

place. The present formulation is based on inviscid fluid and moreover the mesh is 

structured. So, overturning of waves could not be modelled. The forces on the vertical 

wall for different wave steepness are shown in Fig. 5.21. The trend in the variation of 

total force on the wall is similar to the free surface pressure variation. 

5.4 WAVE INTERACTION WITH A RECTANGULAR OBJECT 

A rectangular object with D/B = 0.5 (where, D and B are the depth and breadth of the 

object) is considered at the center of the tank. The tank size considered for this case is 

10m. The frequency (σ) is taken as 1.25 2g B  that corresponds to the wavelength of 

2B. The water depth is 0.5 times the wavelength. Diffraction effects are considered to 

be large at this frequency. The mesh configuration at a particular time step with the 

object is shown in Fig. 5.22. This study has been carried out to prove the capability of 

the unstructured model in handling complex problems. Waves of two different 

steepness were considered in the study. The free surface profile on the upstream of the 

body (x = 3.5m) is shown in Fig. 5.23a. It is clearly seen that the steeper wave travels 

faster. Standing wave of amplitude twice that of the incident wave is observed on the 

upstream side of the body as can be seen in Fig. 5.23b. The transmission of waves is 

observed to be negligible on both the cases as shown in Fig. 5.23c. Based on the 

linear theory, the incident waves are fully developed on the upstream of the body at 

t/T > 8. Thus, at this frequency, the body acts as a vertical wall reflecting most of the 

incident wave energy and transmitting only a small part of energy onto the 

downstream side.  
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5.5  WAVE INTERACTION WITH A SUBMERGED CYLINDER 

A submerged horizontal cylinder of diameter 0.12m is placed at a distance of 10m 

from the paddle. The centre of the cylinder is 0.12m below the still water level. The 

mesh structure near the cylinder is shown in Fig. 5.24. In order to compare with the 

experimental measurements, a regular wave of height, 0.002m and frequency, 

1.8485 g h  is generated in a water depth of 1m. This case corresponds to Case E of 

Chaplin (1984). The simulated wave profile with and without the cylinder at 5m, 10m 

and 12m from the wave board are shown in Fig. 5.25. It is clearly evident that there is 

no difference in the wave profile before the wave encounters the cylinder, whereas, a 

phase shift has been developed while the wave propagates over the cylinder and 

continued to propagate with a phase shift (x =12m). This is in agreement with the 

observation made by Chaplin (1984) that after the wave passing over the cylinder, a 

phase lag of 15° is noticed. Moreover, Dean (1948) showed an interesting result that 

the reflection coefficient for a submerged cylinder is zero to first-order. This is shown 

in Fig. 5.25d, proving that there is no reflection from the cylinder. Even though, there 

is a phase shift after the wave passing over the cylinder, the wave height remains the 

same in the presence of the cylinder. The force on the submerged cylinder is also 

calculated by integrating the pressures over the surface, the force component is split 

into Fa and Fb to clearly depict the mean vertical force. 
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The x- and z- components of force, Fa and Fb are shown in Fig. 5.26 and Fig. 5.27, 

respectively. The amplitude of the force component builds up and reaches a steady 

state after 20s, since for the input profile the tanh tampering is used to remove the 

transient waves. The phase shift in the x and z component of the force time histories is 

clearly visible for Fa, whereas, for Fb, a mean vertical force component is observed. 

The non dimensional mean vertical force component for the present method is 0.191 

which is in excellent agreement with the results from analytical model (Ogilvie, 1963) 

of 0.190 and with the experimental results of (Chaplin, 1984) of 0.187. 

5.6 SIMULAITON OF SLOSHING WAVES 

5.6.1. General 

The need for numerical modeling of sloshing waves arises due to the significant 

importance of the higher order effects for the sloshing waves which are nonlinear. 

Neither the linear nor the second order potential considerations are sufficient enough 

to describe steep waves (Frandsen, 2004). The advantage of the numerical modelling 

is the flexibility in the simulation of the real sea state situation that has been carried 

out herein. The viscous effects play an important role after a critical depth (Faltinsen 

et al. 2000). Based on the dimensions of the tank, in the case of horizontal excitation, 

Wu et al. (1998) reported the transition from standing wave form to progressive 

waves in the form of a bore. Hence, the dimensions of the tank are the influential 

parameters in the study of sloshing waves. As this section, mainly deals with the 

effect of random horizontal and vertical excitations, the dimension of the tank is 

assumed to be of constant length (L) of 2m and depth (h) of 1m, such that the depth 

aspect ratio (h/L) is 0.5. The present numerical model is initially validated with the 
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numerical work of Frandsen (2004) for regular motions and then applied for the 

computation of the sloshing due to random excitation, which is elaborated in detail. It 

is worthwhile to note that the results presented herein, give rise to more questions 

than answers.  

5.6.2. Mathematical Formulation 

Let O0 x0 z0 be the fixed coordinate system and O x z be the moving coordinate system 

fixed with the tank. These two coordinate systems coincide with each other when the 

tank is at rest. The origins of this system are at the left end of the tank wall at the free 

surface and pointing upwards in z- direction. These two coordinates along with the 

prescribed boundary conditions in each coordinate system is represented in Figs. 

5.28a and b. 

The displacements of the tank are governed by the directions of axes as, 

[ ])(),( tztxX ttt =  (5.6)

On the assumption that the fluid is governed by potential flow theory, the velocity 

potential φ satisfies the Laplace equation. 

2 0∇ =φ  in the fluid domain, Ω      (5.7)

The component of the water particle velocity normal to the walls of the tank is equal 

to the tank velocity. 

.∂
=

∂
U n

n
φ

 in the side walls,ΓB (5.8)

where, tdXU
dt

=  is the velocity of the tank and n is outward normal to the tank walls.  
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The dynamic and kinematic free surface boundary condition in the fixed coordinate 

system can be written as, 

0.
2
1

0 =+∇∇+
∂
∂ ηφφφ g

t  (5.9)
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The free surface motion can be described in the moving coordinate system as, 
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which is obtained by substituting the following Eqns.(5.13) and (5.14) in Eqns.(5.9) 

and (5.10), 

xzzx ∇=∇
00  (5.13)
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(5.14)

on z=η, where  η=η0 - zt is the free surface elevation in the moving coordinate system 

O x z. 

Now, let the velocity potential be decomposed into,  

zwxu ++=ϕφ  (5.15)

i.e., the velocity potential in the fixed coordinates system contains the velocity 

potential in the moving coordinates and the direction of the excitation with the 

corresponding velocity in that direction, u and w are the velocity components in the x 

and z directions. Substituting Eqn. (5.15) in Eqns.(5.7),(5.8),(5.11) and (5.12) leads to, 
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2 0∇ =ϕ  in the fluid domain, Ω  (5.16)

0=
∂
∂

n
ϕ

 in the side walls, ΓB. (5.17)

The dynamic and kinematic free surface condition becomes, 
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Rewriting the above equations in Lagrangian form of motion following Longuett-

Higgins and Cokelet (1976), 

)())((.
2
1 "" txxtzg

dt
d

TT −+−∇∇= ηϕϕϕ

 (5.20)

∂
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∂

dx
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ϕ
 and 

∂
=
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dz
dt z

ϕ
 (5.21)

where, " ( )T
dux t
dt

=  and " ( )T
dwz t
dt

=   

The initial condition of the system can be assumed as, 

0),,( 00 =tzxφ  (5.22)

0 0 0( , ) =x tη ζ where t = z0=0 (5.23)

 In moving coordinates, at t = 0 and z = 0, the above equations become, 

( ,0,0)x xuϕ = −  (5.24)

( , ) 0=x tη for horizontal excitation. (5.25a)

0( , ) =x tη ζ  for vertical excitation (5.25b)

where, ζ0 is the non physical condition, specifying the initial elevation. 
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Based on the initial condition, the boundary value problem is solved and the free 

surface elevation and potential values are updated at the subsequent time steps. 

Eqns.(5.17), (5.20) and (5.21) form the boundary conditions. Thus, this form of 

boundary conditions reduces the computational burden of creating a finer mesh 

structure along the free surface boundary, since the tank excitation is incorporated in 

the kinematic and dynamic free surface boundary condition.  

Formulating the governing Laplace’s equation constrained with the associated 

boundary conditions (without considering the Dirichlet condition), it leads to the 

following finite element formulation [as per Eqn.3.14], 

1

0
m

i j j
j

N N d
Ω

φ Ω
=

∇ ∇ =∑∫  (5.26a)

The above equation can be rewritten in the matrix form and the Dirichlet condition on 

the free surface can be imposed as, 

Aij Φ = Bi (5.26b)

Where, 
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Bi = 
0

,i siφ Γ
⎧
⎨ ∈⎩

 (5.26d)

5.6.3 Input Generation 

Regular wave excitation 

The container is assumed to take the following horizontal and vertical oscillations, 
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( ) ( )T h hx t a H tω=  (5.27a)

( ) ( )T v vz t a V tω=  (5.27b)

where ah,v and ωh,v are the characteristics excitation amplitude and excitation 

frequency. The motion of the container is assumed as ( ) ( ) cos( )= =V Hχ χ χ .  

For the rectangular container, the order of the natural frequency is (Faltinsen, 1974) 

tanh( )=n n ngk k hω ,  n = 1,2,3…… (5.28)

where, the wave number is given by kn= nπ/L. 

Random wave excitation 

In this study, Bretschneider spectrum is used as the input wave spectrum which is 

given by, 

( )
5 425 5

16 4
p ps

p

HS expη

⎡ ⎤ω ω⎛ ⎞ ⎛ ⎞
⎢ ⎥ω = −⎜ ⎟ ⎜ ⎟ω ω ω⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦  

(5.29)

The free surface elevation is described by, 

1
cos( )

=

= +∑
wN

i i
i

i
a tη ω ψ  (5.30)

where, ai is the amplitude that is defined as 2 ( )ia Sη ω ω= Δ .  

Nw is the number of sinusoidal wave components, ωi and ψi are the frequency and the 

phase angle, wherein the frequency ranges from 0 to π/dt and phase angle (random 

variable based on the fixed seed number is used in this study) ranges from 0 to 2π. 

Herein, ωp and Hs are the peak frequency and significant wave height. In this study, 

the range of frequency has been taken up to the cut off frequency and is assumed to be 
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five times the natural frequency of the container; since the higher frequency will not 

have much influence on the generated waves. Based on the spectrum, the random 

waves are generated which are given as the input to the oscillation of the container, 

thus, the Eqn.(5.25) is assumed to be 

1

( ) cos ( )
WN

i i
T i

i

x t a tω ψ
=

= +∑  for horizontal random oscillation (5.31)

1

( ) cos ( )
WN

i i
T i

i

z t a tω ψ
=

= +∑ for vertical random oscillation (5.32)

5.6.4. Regular Wave Excitation 

Horizontal excitation 

The present numerical model is initially compared with analytical solution from 

Faltinsen (1974), assuming the excitation velocity as ahωh cos (ωht). The comparison 

between the numerical and the analytical results after every 2s interval is shown in 

Fig. 5.29. An excellent agreement is found. Further, the numerical simulation of 

regular waves using the present methodology is compared with the numerical results 

of Frandsen (2004). The displacement ZT (t) of the container is given by the Eqn. 

(5.27a) results in the excitation velocity as ahωh sin(ωht). This leads the initial 

condition for velocity potential [Eqn. (5.24)] to zero and the surface elevation is 

considered as in Eqn.(5.25a) for this mode of excitation. For only horizontal 

excitation to exist, the vertical acceleration is assumed to be zero. Comparison has 

been made for a smaller and a steeper wave with the numerical simulation of 

Frandsen (2004) [Fig. 5.30]. It can be observed that both the simulation are in close 

agreement for the forcing frequency (ωh) equal to seventy percent of the first mode of 

natural frequency (ω1). There are 31 nodes in the x direction (free surface) and 13 
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nodes in the z direction. The time step adopted is 0.01s for both the simulations. An 

automatic regridding condition is adopted in the present study when the movement of 

the nodes is 75% more or less than the initial grid spacing. Smoothing is not adopted 

in the present simulation. It is found that no regridding is required for the simulation 

of small amplitude waves. In the case of steep waves, the need for regridding arises 

about 20 times for a simulated duration of 61.44s. 

The induced sloshing time series is subjected to frequency domain analysis for a 

range of excitation frequency with an excitation amplitude of ah=0.005h from which 

the occurrence of spectral peaks is identified. The spectral density of free surface 

elevation in the tank for the excitation frequencies, ωh =0.35ω1, ωh = 0.75ω1, ωh =ω1, 

ωh =1.5ω1, ωh =2.0ω1 and ωh =ω3, are depicted in Fig. 5.31. The maximum spectral 

peak occurs at the excitation frequency when the excitation frequency is less than the 

natural frequency and, a secondary peak occurs at the container natural frequency as 

can be seen in Figs. 5.31a and b. While, the excitation frequency is more than the 

container natural frequency and upto the second modal frequency [ω1 < ωh < ω2 

(=1.5ω1)], the primary peak occurs at the first mode followed by a secondary peak at 

the third natural frequency (Fig. 5.31d). For excitation frequencies equal to or greater 

than 1.8ω1(=ω3), the third modal frequency dominates the sloshing motion. From 

Figs. 5.31c and f, the sloshing motion is more violent at the natural frequency of the 

container when the excitation frequency is equal to the first mode rather than at the 

third mode, which is a well-known resonance phenomenon. The typical moving mesh 

generated after every 5s interval is shown in Fig. 5.32 for the above said resonance 

condition. 
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In order to have an in-depth knowledge on the occurrence and the magnitude of the 

spectral peaks with respect to the excitation frequency, the above simulation was 

executed for different excitation frequencies. The magnitude of the first, third and 

excitation mode from the spectral analysis is shown in Fig. 5.33 with respect to the 

ratio of excitation by first mode of the container frequency (excitation frequency 

ratio). The figure is separated into three zoomed zones for the excitation frequency 

ratio between 0.2 to 1.1, 1.1 to 1.55 and 1.55 to 2.6 [Fig. 5.33a]. When the excitation 

frequency is less than first mode (ωh < ω1), the primary spectral peak is observed at 

the excitation frequency as inferred from the results reported in Fig. 5.33b.  The 

response component at the first modal frequency is observed to increase as the 

frequency increases. When the excitation frequency is greater than first mode, the 

sloshing dominates at the first modal frequency upto second mode (ω2=1.5ω1) and till 

this frequency, the secondary peak is observed at the excitation frequency as can be 

seen in Fig. 5.33c. When the excitation frequency is greater than ω1, the domination 

of the first mode reduces with an increase in the frequency ratio. With a further 

increase in the excitation frequency ratio (ωh >=1.5ω1), the normalized spectral peak 

at third mode increases rapidly to 450 and 485 at ωh = 1.72ω1 and ωh = 1.8ω1 

respectively. This can also be clearly seen in Fig. 5.33d. Furthermore, for the range of 

excitation frequency ratio 1.5 to 1.8, the response at the excitation frequency is 

insignificant. It is also observed that the sloshing is not dominant at the fifth or higher 

order modal frequency. Beyond the third modal frequency (ω3), the contribution at the 

excitation frequency is influenced apart from oscillation at first and third modal 

frequency components. But, one should keep in mind that the fifth mode (2.3ω1) can 
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also excite. The maximum sloshing amplitude occurs, when the excitation frequency 

is equal to the first mode and the next largest is 5.65 times lesser occurring at ω3. 

Vertical excitation 

To simulate the condition of vertical excitation for the container, XT is set to zero in 

Eqn.(5.20). The tank is assumed to be periodically excited with the displacement 

given by Eqn (5.27b), which leads to velocity of the form -avωvsin(ωvt). Thus, initial 

velocity potential becomes zero according to Eqn.(5.24). The initial condition for the 

surface elevation is an important parameter as there should be some initial 

perturbation in the system for the generation of waves due to vertical excitation. The 

linear solution and the stability criteria of Faraday waves are given by Benjamin and 

Ursell (1954). In the numerical simulation, it is quite often to adopt an initial free 

surface perturbation of η = ζ0 = a cos(knx). It should be noted that this condition does 

not necessarily arise in the real situation because both horizontal and vertical motions 

co-exist. For experimental purposes, the initial perturbation is introduced in the 

system, by exciting tank horizontally for the prescribed time. Two typical sloshing 

simulations are carried out, following small amplitude motion and steep wave 

excitation as shown in Fig. 5.34. The steepness parameter depends on the adopted 

initial condition, ε = a ω2
n/g. The present simulation shows a close agreement with the 

numerical simulation of Frandsen (2004). The grid size and the time step adopted are 

the same as that for horizontal motion. 

A frequency domain analysis for the sloshing motion due to vertical excitation has 

been carried out. Even though, it may not clearly depict the exact phenomenon of the 

waves such as the detonating effects as noticed by Frandsen (2004), it gives the 
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picture of the critical resonance condition based on the intensity as discussed in sway 

mode. The spectra of sloshing time series for two different initial steepness conditions 

of 0.014 and 0.288 and with constant excitation amplitude are presented in Fig. 5.35 

and Fig. 5.36, respectively. Such plots have been reported for ωv=0.75ω1, ω1, 1.5ω1, 

2ω1 and 2.5ω1. A comparison of the results presented in the above two figures reveals 

the following. In the case of lesser initial steepness, a single peak of the dimensionless 

sloshing energy is observed at frequency ratio of 1, irrespective of the magnitude of 

the excitation frequency. In the case of the higher initial steepness adopted in the 

study, the dimensionless sloshing frequency spectrum exhibits secondary peaks at 

ω/ω1 = 1.5 and 2 for all the ωv tested. The magnitude of the secondary peak is 

insignificant compared to the primary peak at the resonance frequency. Frandsen 

(2004) noticed similar existence of peaks in the wave spectra. 

5.6.1. Random Wave Excitation 

General 

In order to understand the sloshing phenomenon, the container is subjected to random 

excitation under the real random sea state, with different peak frequency by keeping 

the total supplied energy to the system as constant. Typical input excitation spectrum 

and the corresponding displacement time history are given in Figs 5.37a and b, 

respectively. The horizontal and vertical container displacements are obtained from 

this spectrum [Eqn.(5.31) or Eqn. (5.32)]. The surface elevations at the left wall of the 

container due to horizontal (η/h)h and vertical (η/h)v excitation are shown in Figs. 

5.37c and d, respectively. The time step adopted is 0.06s and the duration of the 
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simulation is 61.44s that corresponds to 1024 data points. These are used to analyse 

the spectrum herein. 

Horizontal excitation 

For a significant wave height of 0.006h, the tank is excited with random waves of 

different peak frequency (ωp= 0.35ω1,ωp = 0.75ω1, ωp =ω1, ωp =1.5ω1, ωp =ω3). The 

power spectra of free surface sloshing elevation at the left corner of the tank wall for 

various excitation peak frequencies are shown in Fig. 5.38. It can be seen that while 

the excitation peak frequency is less than the natural frequency, the sloshing spectral 

peaks appear only at natural frequencies (first, third and fifth mode) of the tank and no 

peak is visible at the excitation peak frequency as noticed in the case of regular 

excitation. The primary spectral peak lies at the first mode. When the excitation peak 

frequency is greater than the first mode of the tank system, there were some high 

frequency waves in the container [Figs. 5.38 d, e and f]. Thus, in horizontal excitation, 

the spectral peaks appear only at the first or higher mode natural frequency, 

irrespective of the excitation peak frequency. Similar trend in the occurrence of 

spectral peaks is also noticed by Wang and Khoo (2005). The spectrum for forces and 

surface elevation of the tank wall were examined using FEM adopting iso-parametric 

elements. It has been shown that the energy mainly concentrates at the natural 

frequency of the container and found to dominate at the ith mode of the container 

when the peak frequency is close to the ith mode.  

Vertical excitation 

The sloshing behavior of the tank when subjected to random vertical excitation is 

studied. The container was subjected to vertical excitation with the same input 
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characteristics as that for horizontal motion for two different initial conditions. The 

initial conditions correspond to small amplitude with a steepness of 0.014 and large 

amplitude with a steepness of 0.288.  The power spectra of waves at the left corner of 

the tank wall with the above initial conditions having steepness of 0.014 and 0.288 are 

shown in Fig. 5.39 and Fig. 5.40, respectively. It can be seen that inspite of the 

excitation frequency, the spectral peaks appear at the first modal frequency only while 

the initial perturbed waves of small steepness. The spectral peaks appear at first, 

second and two times the first mode (parametric) frequency, if the initial perturbed 

waves are of large steepness. This is similar to that of the regular wave excitation as 

discussed earlier for the heave mode. The dominating frequency appears at the first 

mode. However, the spectral peak magnitudes at the first modal frequency are of 

same order, irrespective of excitation peak frequency. This phenomenon is observed 

irrespective of the different initial perturbation in the tank. It should be noted that no 

regridding is necessary for small steepness case, and hence the numerical damping 

does not play any role for the above results. However, in the case of regular wave 

excitation, the magnitude of peak is higher at ωv= 2ω1 for small and high initial 

steepness.  

5.7.  SUMMARY 

The present chapter shows the applicability of the developed model to steep wave 

propagation over a submerged bar, interaction of solitary waves over continental shelf 

and vertical wall, wave interaction with surface piercing object and submerged 

cylinder. In particular, a detailed investigation is carried out for the interaction of 

solitary waves over continental shelf and the reflection characteristics of the solitary 

wave profile, in order to understand the physics behind the solitary waves, owing to 
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the increase in research demands after Indian Ocean Tsunami 2004. The last part of 

this chapter gave an in-depth analysis for the sloshing waves under two different 

excitatory motions in regular and random sea states, which is one of the complex 

nonlinear phenomena for the LNG ship carrying tank. 
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Table 5.1 Simulated Input Wave Parameters in a Water Depth of 
0.5m. 

Case Wave 
Period (T in 
sec) 

Wave Height 

 (H in m) 

Ursell parameter over the 
shelf 

A 1.34 0.025 21.6 

B 1.34 0.05 43.3 

C 2.01 0.05 108.7 

D 2.68 0.05 201.5 

 
 

 

Table 5.2 Comparison with the Bousinessq Model for Wave Speed in 
Split-up Waves. Cnwt – Numerical Celerity, Cbou – Boussinessq 
Celerity [ ( )BouC g h H= + ]. 

No Wave 
Height(H in 
m) 

Cnwt CBou 

1 0.0130 1.6 1.6064 

2 0.0547 1.71 1.7289 

3 0.1578 2.0 2.0001 

 



 161

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Experimental Setup of Beji and Battjes (1993) 
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Fig. 5.2 Comparison of the Free Surface Elevation with the 
Experimental Measurements of Bejji and Battjes (1994) at 
Seven Different Position in the presence of a Submerged Bar 
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Fig. 5.3 Mesh Configuration at a particular Time Step near the 
Trapezoidal Obstacle along the Length of the Tank (5m to 18m) 
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Fig. 5.4 Experimental Setup of Ohyama et al. (1995) 
 

Fig. 5.5 Free Surface Profile and the Mesh Configuration when the 
Wave Reaches the Deeper Water Region from the Shallow 
Water Region 
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Fig. 5.6 Comparison of Numerical Simulation with Experimental 
Measurements. Left Side Figures are at Station 3 and Right Side 
Figures are at Station 5 [οοοοExperiments (Ohyama et al. 1995); 

 CS; ------ LS] 
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Fig. 5.7 Comparison of the Free Surface Profile with the Bousinessq 
Theory at t = 80s over a constant Water Depth 

Fig. 5.8 Free Surface Profile at Time 20s, 40s, 80s and 119s along the 
Length of the Tank 
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Fig. 5.9. Contd.. 

 

 

 

  

 

Fig. 5.9 Space – Time Plot showing the Splitting of Solitary Waves while 
Propagating into Shallower Water Depths (h0) [h = 0.5m; H = 
0.1m] 
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Fig. 5.9 Contd. 
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Fig. 5.10 Free Surface Profile at t = 119s While Solitary Wave Propagates 
into Shallow Water Depths [h = 0.5m; H = 0.1m] 
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Fig. 5.11 Dimensions of the Wave Tank with the Location of the 
Numerical Wave Gauges 

 

Fig. 5.12 Discretisation of the Step using Triangular Elements 
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Fig. 5.13 Transmission Coefficient over Obstacles of Different Relative 
Height [  First Order Shallow Water Wave Theory; (+) 
First, (◊) Second and ( ) Third Transmitted Wave of 
Experiments (Seabra-Santos et al. 1987); (•) First, ( ) Second 
and ( ) Third Transmitted Wave of Numerical Simulation] 
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Fig. 5.14 Reflection Coefficient for Different Relative Obstacle Height 
[ First Order Shallow Water Wave Theory; +++ 
Experiments (Seabra-Santos et al. 1987); οοο  Numerical] 
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Fig. 5.15 Propagation of the Solitary Wave over a Smooth Slope, (c) and 
(d) are the zoomed in view of the Rectangle Marked in (a) and 
(b) respectively 
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Fig. 5.16 Vertical Wall Run-up due to Different Wave Steepness   

Fig. 5.17 Maximum Horizontal Force on the Vertical Wall due to 
Different Wave Steepness 

 

0.1 0.2 0.3 0.4 0.5 0.6
H/h

0.4

0.8

1.2

1.6

2

F x
/ρ

gh
2

Present Numerical
Second order empirical results

0.1 0.2 0.3 0.4 0.5 0.6
H/h

0

0.4

0.8

1.2

1.6

R
/h

Fenton and Rienecker(1982)
Present Numerical



 175

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.18 Reflected Shape of the Profile for Different Steepness:(a) H/h = 
0.1, (b) H/h = 0.2, (b) H/h = 0.3, (c) H/h = 0.4, (d) H/h = 0.5,  
[  Incident Wave;----- Reflected Wave] 
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Fig. 5.19a Variation of the change in Wave Elevation (Δη) with respect to 
Wave Steepness 

 

Fig. 5.19b Variation of change in Wave Celerity (ΔC) with respect to Wave 
Steepness 
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Fig. 5.20a Pressure Time History on the Vertical Wall at the Still Water 
Level [From Left to Right: H/h = 0.1; 0.198; 0.293; 0.383; 
0.4699; 0.5533] 

 

Fig. 5.20b Pressure Time History at the Bottom of the Vertical Wall [From 
Left to Right: H/h = 0.1; 0.198; 0.293; 0.383; 0.4699; 0.5533] 
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Fig. 5.21 Force Time History on the Vertical Wall [From Left to Right: 
H/h = 0.1; 0.198; 0.293; 0.383; 0.4699; 0.5533] 

Fig. 5.22 Typical Mesh Configuration in the Presence of a Rectangular 
Object 
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a) Time History at 3.5m from the Wave Paddle 
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b) Time History at Upstream Side of the Body 
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c) Time History at the Downstream Side of the Body 

Fig. 5.23 Comparison of Free Surface Profile between Two Different 
Wave Heights with a Rectangular Object [-------H/λ = 0.015; 

 H/λ =0.075] 
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Fig. 5.24 Initial Mesh Structure with Cylinder Generated using GAMBIT 
and Refined using ICEM-CFD 

 

Fig. 5.25 Comparison of the Wave Profiles with and without the Cylinder 
[------ without Cylinder;  with Cylinder] 

a) x = 5m 

b) x = 10m (above cylinder)
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Fig. 5.25 Contd. 

Fig. 5.26 Force Time Histories of Component Fa [-------- x Component; 
 z Component] 
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d) t = 30s  
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Fig. 5.27 Force Time Histories of Component Fb [------- x Component, 
 z Component] 

 



 183

 

 

 

            
(a) Fixed Coordinate System. 

 

           
(b) Moving Coordinate System. 

 
 

 

 

 

 

 

Fig. 5.28 Sloshing Wave Tank Model Domain 
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Fig. 5.29 Free Surface Profiles over the Length for ωh=0.999ω1 and ah = 
0.0018 after every 2s Interval [  Numerical; ------ 
Analytical] 
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Fig. 5.30 Free Surface Elevation at the Left Wall due to Regular 
Horizontal Excitation at a Frequency, ωh = 0.7ω1 
(a) ahωh

2=0.0036g; (b) ahωh
2=0.036g [  Present Numerical; 

•••• Numerical (Frandsen, 2004)] 
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Fig. 5.31 Power Spectra of Waves at the Left Corner of the Wall due to 
Horizontal Excitation, 0.005ha h=  [T1 12 /π ω= ] 
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Fig. 5.32 Movement of the Generated Mesh during a Horizontal 
Excitation after every 5s Interval for 0.005ha h= and hω = 1ω , 
Number of Nodes in x Direction is 31 and in z Direction is 13 
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Fig. 5.33 Bar Chart showing the Magnitude of Different Spectral Peaks of 
Sloshing Waves due to Horizontal Excitation with Frequencies 
[ω2 =1.5ω1;ω3 =1.8ω1;ω5 =2.334ω1] 
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Fig. 5.34 Free Surface Elevation at the Left Wall due to Regular Vertical 
Excitation of Frequency, ωv =0.789ω1, avωv

2
 =0.5g. a)ε=0.0014 b) 

ε=0.288 [  Present Numerical; •••• Numerical (Frandsen, 
2004)] 
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Fig. 5.35 Power Spectra of Free Surface Sloshing Waves at the Left 
Corner of the Wall due to Regular Vertical Excitation for an 
Initial Steepness of 0.014, 0.005va h=  [T1 12 /π ω= ] 
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Fig. 5.36 Power Spectra of Free Surface Sloshing Waves at the Left 
Corner of the Wall due to Regular Vertical Excitation for an 
Initial Steepness of 0.288, va h0.005=  [T1 12 /π ω= ] 
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Fig. 5.37a Typical Excitation Spectrum with Hs= 0.01h and ωp= ω1  

Fig. 5.37b Displacement Generated from the Spectrum Fig. 5.37a  

or 
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Fig. 5.37c Free Surface Elevation at the Left Corner of the Wall due to 
Horizontal Motions Prescribed by Fig. 5.37b 

 Fig. 5.37d Free Surface Elevation at the Left Corner of the Wall due to 
Vertical Motions Prescribed by Fig. 5.37b 
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Fig. 5.38 Spectra of Free Surface Sloshing Waves at the Left Corner of 
the Wall due to Horizontal Random Excitation of Hs =0.006h 
[T1 12 /π ω= ] 
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Fig. 5.39 Spectra of Free Surface Sloshing Waves at the Left Corner of 
the Wall due to Vertical Random Excitation for an Initial 
Steepness of 0.014 and Hs =0.006h [T1 12 /π ω= ] 
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Fig. 5.40 Spectra of Free Surface Sloshing Waves at the Left Corner of 
the Wall due to Vertical Random Excitation for an Initial 
Steepness of 0.288 and Hs =0.006h [T1 12 /π ω= ] 



CHAPTER 6 

3-DIMENSIONAL NUMERICAL WAVE TANK  

6.1 GENERAL 

The previous chapters focused in detail the implementation of 2-dimensional 

simulation in FEM and the estimation of different velocity calculation methods and its 

influence on smoothing/ regridding. The developed model has been applied to various 

wave structure problems and sloshing. In this chapter, the extension of the present 

code to the 3-D tank has been presented. In the previous chapters, width of the tank 

for the numerical simulation has not been considered, from herein, the width will be 

considered and hence named as 3-D tank following Ma et al. (2001). For the FEM 

discretization, four noded tetrahedron elements are used. As a preliminary 

investigation, only 2-D waves are generated in a 3-D tank. 

6.2 MATHEMATICAL FORMULATION 

The basic assumption, boundary conditions, FE formulation as described in chapter 3, 

remains same but with an additional horizontal dimension, y. A brief overview of the 

mathematical formulations is given in this section. The flow problem to be defined 

with the Laplace’s equation involving velocity potential ( , , , )x y z tΦ given by 

02 =Φ∇  (6.1)

A potential flow in a rectangular flume with a wavemaker at one end and the 

nonlinear free surface boundary condition at the free surface is considered. The 

schematic representation of the computational domain and the prescribed Neumann 

and Dirichlet boundary conditions on the five boundaries [bottom (AB), left (AP), right 

(A∞), front (AW) and back (AW) wall] and at the free surface are shown in Fig. 6.1. 
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The tank bottom is assumed to be flat, rigid and no flow through it is given by, 

0 @ ,z h
n
Φ∂

= = −
∂

 on BA  (6.2)

Fully reflecting wall at the far end and at side walls are represented by, 

0 @ ,x L
n
Φ∂

= =
∂

 on A∞  (6.3)

0 @ 0/ ,y y B
n
Φ∂

= = =
∂

 on wA  (6.4)

Wave paddle on the left end, 

( )@ ( ),p px t x x t
n
Φ∂

= =
∂

 on pA  (6.5)

where, xp (t) is the time history of wave paddle motion. The boundary condition at the 

far end is dealt later. 

The Lagrangian form of nonlinear free surface boundary condition is given by 

Longuet –Higgins and Cokelet (1976) as, 

xDt
Dx

∂
Φ∂

=
 

(6.6a)

Dy
Dt y

Φ∂
=
∂

 (6.6b)

zDt
Dz

∂
Φ∂

=
 

(6.6c)

ηg
Dt
D

−Φ∇Φ∇=
Φ

2
1

 
(6.6d)

The finite element formulation in the 3-D tank without considering the Dirichlet 

condition is then written as (Eqn.3.14 in 2-D), 
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1
φ

•

=

∇ ∇ =−∑∫∫∫ ∫∫
m

pi j j i
jv A

N N dv N x t dA( )  (6.7)

The above equation can be rewritten in the matrix form and the Dirichlet condition 

can be imposed as, 

Aij Φ = Bi (6.8a)

where, 

Aij = 

, ,

1 , &
0 ,( )&

i j s
V

s

s s

N N dV i j A

i j j A
i A or j A i j

⎧ ∇ ∇ ∉
⎪
⎪

= ∈⎨
⎪ ∈ ∈ ≠⎪
⎩

∫∫∫
 (6.8b)

Bi =
( )

,

pi
A

i s

N x t dA

i Aφ

•⎧−⎪
⎨
⎪ ∈⎩

∫∫  (6.8c)

Linear 4- noded tetrahedron element is adopted. Even though, the solution for the 

above system of linear equations is symmetric and banded, the number of nodes 

(equations) in the 3-D case is large and hence, in order to minimize the computational 

time, one has to resort to special solvers like direct solver with out-of-core or indirect 

matrix solver. For the present study, the Gauss elimination method as an in-core 

solver is used even though the computational time is large.  

As described in the previous chapters, the calculation of velocity plays a major role in 

the time dependent simulation. In analyzing the different velocity calculations 

methods, the proposed cubic spline approach (Section 3.6.6) holds good only for 2-D, 

whereas, sigma transformation, least square method and global projection method are 

applicable for both the cases. The estimation using global projection method in the 3-

D case is expensive, since one has to solve two equations based on the total number of 

nodes in the domain. The mapping of the physical domain to the computational 
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domain at every time step using sigma transformed FD is not feasible for unstructured 

mesh. The least square principle is flexible to adapt for any kind of mesh 

configuration and hence adopted in the present study. 

Ma et al. (2001a) used the least square principle by making use of the free surface 

nodes alone (considering as grouping vectors) for the calculation of velocity and 

claimed that this led to inaccurate velocity evaluations. Hence, a recovery procedure 

has been implemented based on patch recovery techniques (Zienkiewich and Zue , 

1992) that are commonly adopted in the stress calculations in solid mechanics.  

To overcome this difficulty, the least squares principle is adopted by considering the 

inner nodes also in the present investigation. The basic idea behind this method is to 

find the derivatives at any node by minimizing the sum of the squares of the error. Let 

k be neighbouring nodes for ith node (Fig. 6.2). For obtaining the derivative of 

function φ(x) at a point i, expand φi around φ1 that lead to, 

2 2 2
1 1 1 1( ) , ( ) , ( ) , ( , , )i i x i y i zx x y y z z O x y zφ φ φ φ φ= + − + − + − + Δ Δ Δ  (6.9)

Defining, 

1 1 1, ( ) / ; , ( ) / ; , ( ) / ;l i l i l ix x x dl y y y dl z z z dl= − = − = −  

1, ( ) /l i dlφ φ φ= −  (6.10)

2 2 2
1 1 1( ) ( ) ( )= − + − + −i i idl x x y y z z  

Taking the RHS in Eqn. (6.9) to LHS and neglecting the higher order terms, then 

summing up the squares of the error around the point  φi, results in, 

2

1

( , , , , , , , )
k

n n n n
l l x l y l z

n

e x y zφ φ φ φ
=

= − − −∑  (6.11)
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Minimizing the error e of Eqn. (6.11) with respect to φ,x , φ,y , φ,z  (i.e., u , v, w) leads 

to the following system of linear equations. 

1 1 1 1

1 1 1 1

1 1 1 1

, , , , , , , ,

, , , , , , , ,

, , , , , , , ,

k k k k
n n n n n n n n
l l l l l l l l

n n n n

k k k k
n n n n n n n n
l l l l l l l l

n n n n

k k k k
n n n n n n n n
l l l l l l l l

n n n n

x x x y x z x
u

y x y y y z v y
w

z x z y z z z

= = = =

= = = =

= = = =

⎛ ⎞ ⎧
⎜ ⎟ ⎪
⎜ ⎟ ⎪⎧ ⎫⎜ ⎟ ⎪⎪ ⎪ ⎪⎜ ⎟ =⎨ ⎬ ⎨
⎜ ⎟⎪ ⎪ ⎪

⎩ ⎭⎜ ⎟ ⎪
⎜ ⎟ ⎪⎜ ⎟
⎝ ⎠ ⎩

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

φ

φ

φ

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪

⎪ ⎪⎭

 (6.12)

If one knows the vertical velocity (w), the above equation can be solved to obtain the 

tangential velocities. The above system of equations reduce to the 2-D case as given 

in Eqn.(3.20a), when one eliminates v.  For calculation of the vertical velocity (w), a 

standard 4 point backward finite difference scheme for unequal interval is used taking 

the advantage of node distribution in vertical direction, similar to 2-D case. A cubic 

polynomial is employed to represent the velocity potential at four different points that 

lies along a vertical straight line below the free surface node. 

2 3
1 1 1 1

2 3
2 2 2 2

2 3
3 3 3 3

2 3
4 4 4 4

a bz cz dz

a bz cz dz

a bz cz dz

a bz cz dz

φ

φ

φ

φ

= + + +

= + + +

= + + +

= + + +

 (6.13)

The above system of equations can be solved a, b, c and d. The first order difference 

is found out by direct differentiation of first equation (φ1, lies on the free surface) and 

plug-in the constant values to find the vertical velocity. This method of estimating the 

vertical velocity is found to be more accurate than that from Eqn.(3.1) for the 3-D 

case. The NODETAB algorithm detailed earlier for 2-D tank has been established for 

the 3-D tank, which is used for the least square method to calculate horizontal 

velocities. 
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6.3  MESH GENERATION 

In the present study, the mesh generation has been kept simple. The free surface nodes 

are initially equally spaced as, 

( )( )
( )( )

1 *

1 *
i

i

x i L NX

y j B NY

= −

= −  (6.14)

where, NX and NY are the number of elements in the x and y direction, respectively. L 

and B are the length and breadth of the tank, respectively.  One could use Eqn. (3.26), 

to find the nodes across the depth using exponential decay. However, during 

implementation it has been noticed that as the time progresses, the mesh configuration 

gets skewed. Hence, the positions of the nodal coordinates are generated depending 

upon the y- coordinates. Thus, Eqn. (3.26) has been modified as given below 

following Ma et al. (2001a). 

( ) ( ) ( )( )( )
( )( ),

exp ( exp /
1 exp

z i z i
i j i i

z i

h h j NZ
z h

h
α η α η

η η
α η

− + − − +
= + +

− − +
 

for i = 1,2…(NX+1)*(NY+1) and j = 1,2… NZ+1 

(6.15)

where, αz is the parameter controlling the mesh size along the vertical direction, 

which is inversely proportional to λ/h ratio. That is, a larger value is adopted for 

smaller λ/h ratio, which leads to smaller elements near to the free surface. One should 

avoid high mesh aspect ratio, hence, the following criteria is used for the evaluation of 

αz. 

2 20.31 2.29 1.47z
h h
g g

α σ σ=− + −  (6.16)
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As discussed earlier, the value of the parameter αz also depends on the y – 

coordinates, i.e., by considering the length of the element in the x-y direction (lxy) and 

hence, the following criteria is also checked, 

αz  < min (α1, α2) 

where α1 and α2 are determined by solving the following implicit equations. 

[ ]

1

1

( )exp 1

exp ( ) 1 10( )

i

xy

i i

h
lNZ

h h

α η

α η η

+⎡ ⎤ −⎢ ⎥⎣ ⎦ =
+ − +

 (6.17a)

[ ]

2

2

( )exp 1 10
exp ( ) 1 ( )

i

xy

i i

h
lNZ

h h

α η

α η η

− +⎡ ⎤ −⎢ ⎥⎣ ⎦ =
− + − +

 (6.17b)

After obtaining the nodal coordinates and node numbering, the element connectivity 

has been done. In order to generate the linear 4 - noded tetrahedron element, the 

following procedure is adopted. Initially, the hexahedron is formed, followed by 

dividing it into two prism elements. Each prism is divided into three tetrahedron 

elements. Thus, a hexahedron is divided into six linear 4 - noded tetrahedron 

elements. The physical interpretation of the above procedure is depicted in Fig. 6.3. 

6.4 MESH ORIENTATION STUDY 

The mesh structure plays an important role in FEM. In the case of 2-D mesh structure 

(Fig. 3.6), the mesh orientation suggested by Westhuis (2001) based on Eigen value 

test has been adopted, whereas, for the 3-D meshing, different investigators used 

different configuration (Ma et al. 2001b; Wu and Hu, 2004; Wang and Wu, 2007). 

Hence, an orientation study has been carried out based on numerical experiments for 

different 3-D mesh configuration. To quantify the effect of the mesh configuration, 
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the velocity potential has been compared with the results from 2-D simulation for a 

narrow tank. A 5m long tank with a water depth of 1m is considered in a 2-D 

simulation and a constant velocity of 3.132 m/s is given at the left side boundary. The 

velocity contour along the length of the tank is shown in Fig. 6.4. The velocity 

potential along the y - direction remains same. Four different 3-D mesh orientations 

have been considered. Considering the mesh type I, the velocity potential contours are 

shown in Fig. 6.5a. The breadth of the tank is assumed to be 0.5m. The comparison of 

the velocity potential at a particular depth (z/h = -0.045) along the y-direction is 

shown in Fig. 6.5b. For 2-D, the velocity potential values remain constant along the y-

direction. Similarly, the velocity potential across the z- direction at the left side 

boundary obtained from 3-D simulation is compared with 2-D. The variation across 

the depth is found to oscillate as can be seen in Fig. 6.5c.  

In mesh type II, the mesh orientation has been reversed and the corresponding 

simulated velocity potential contour is shown in Fig. 6.6. The variation of potential 

across the tank width (Fig. 6.6b) is observed to be reversed compared to Fig. 6.5b, 

corresponding to the reversal of mesh orientation. After observing mesh orientation, 

mesh type III has been attempted by using zigzag configuration. Fig. 6.7a shows the 

simulated potential contours and Fig. 6.7b shows the variation of potential across the 

width of the tank. The variation is also found to be zigzag. Even after increasing the 

number of nodes in the y – direction, the inaccuracies exists for all the above mesh 

types. To overcome the above difficulties, mesh type IV with crisscross links has been 

generated and the corresponding simulated potential contour is shown in Fig. 6.8a. It 

is found that the potential value across the width and depth are in good agreement 
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with the comparison of potential in 2-D simulation. Hence, mesh type IV has been 

considered for all the 3-D simulation in the present study. 

6.5 WAVE ABSORBERS 

6.5.1 General 

The absorption of the nonlinear free surface waves has been a topic of intensive 

research both through experimental and numerical studies. In the case of experiments, 

the absorption of the nonlinear free surface waves has been attempted by using the 

porous systems. The numerical absorption using non-reflecting boundary condition is 

being adopted to let the waves purely outgoing as in open sea state. A comprehensive 

review of the numerical methods in the context of absorption of nonlinear free surface 

waves is given by Romate (1992). The commonly adopted absorber types are: 

• Matching boundary condition: This technique consists in matching the inner 

solution at the truncation boundary with an outer one generated by Kelvin’s Green 

function which satisfies intrinsically the free surface condition. In order to 

minimise the difference between the inner nonlinear solution and the outer linear 

one, the above linear approximation being imposed at a larger distance thus it 

requires larger computational domain. This method was being implemented by 

Lin et al. (1984) and Dommermuth and Yue (1987). 

• Sommerfeld radiation boundary condition: This condition is often used in the 

frequency domain analysis, providing a simple relationship between the time and 

normal derivatives. Sommerfeld condition in the time domain has been given by 

Orlanski (1976) by replacing the frequency dependent phase velocity to the local 
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time dependent velocity, C(t).  This condition is local both in time and space and 

also applicable for the known time period steady waves. Grilli et al. (1989) 

developed an implicit iterative radiation condition, based on Sommerfeld’s 

condition, which worked quite well for waves of permanent form like solitary 

waves. A more accurate explicit approach was proposed by Otta et al. (1992), 

combining Orlanski’s condition with the incident wave kinematics calculated at 

internal nodes in the model, close to the radiation boundary. The method worked 

well for periodic waves but only exhibited limited success when applied to 

irregular waves. 

• Damping zone:  Based on the methodology of Le Mehaute (1972), Larsen and 

Darcy (1983) introduced a concept of ‘absorbing beach’ in which an external 

pressure was applied on the surface to create a negative work against the incident 

work. This concept has been implemented in the weakly nonlinear model based on 

Bousinessq equations. This concept acts as an artificial damping in the form of 

sponge layers or damping zone so that the outgoing waves are damped near the 

open boundary with little reflection. Two methods of implementation are possible 

for this concept: the first is to add a damping in the field equation and the other is 

to include the damping term in the surface boundary condition. In the case of fully 

nonlinear free surface waves based on potential flow method, it has been used by 

adding in dynamic condition and/or in kinematic condition. (Betts and Mohamad, 

1982; Cointe et al. 1990; Cao et al. 1993; Ohyama and Nadaoka, 1991; 

Subramanya and Grilli, 1994; and Clement, 1996). This concept is easier to 

implement and has good absorption capacity over a wide range of frequencies 
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requiring a large damping zone normally of the order of ten times the water depth 

or three times the wavelength. 

• Active wave absorber: This technique is similar to the wave paddle absorption 

used in the laboratory by use of piston type boundary condition. Clement (1996) 

used this type of boundary condition and later was implemented by several 

investigators. 

Instead of using a single absorber, combination of any two absorbers provides an 

efficient solution. A combination of a Sommerfeld condition and a numerical 

dissipation zone, originally suggested by Israeli and Orszag (1981) and later extended 

by several authors’ (e.g., Ohyama and Nadaoka, 1991; Ma et al. 2001). However, a 

relatively long dissipative zone is needed to obtain sufficiently low reflection and 

hence the associated computational costs considerably increase for some of the 

applications. Westhuis (2001) used a combination of absorbing beach with a constant 

length and Sommerfeld radiation condition along with the grid stretching. Clement 

(1996) proposed a method by combining an absorbing beach with an active absorbing 

boundary condition at the tank extremity, and showed that this method performed 

well for unsteady finite amplitude waves. In the 2-D simulation, the inclusion of the 

damping zone is sufficient since, larger domains can be considered. In the 3-D 

simulation, this is not feasible. Hence, a combination of new type of mixed boundary 

condition consisting of absorbing beach along with the mesh stretching technique is 

adopted in the present study. A brief overview of the proposed methodology is given 

below.  
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6.5.2 Mixed Boundary Condition 

The well known Orlanski condition can be written as, 

( , ) 1 ( , )
( )

z t z t
n c t t

Φ Φ∂ ∂
=

∂ ∂
 (6.18)

where, the local normal velocity is considered proportional to the dynamic pressure 

and therefore, is a function of z. The coefficient c(t) is kept constant with a limit of 

long wave theory √gh or assumed to be time dependent and continuously extrapolated 

at each time instant from the previous time steps during the simulation. Clement 

(1996) proposed a piston like boundary condition after the extensive investigation on 

the above method of implementation. This Neumann boundary condition is said to be 

piston like since the normal derivative does not depend upon z (dependency is being 

neglected, by averaging the dynamic pressure at the boundary), and is given in 2D as, 

( , ) 1
( )

z t
n c t tΓ

Φ Φρ∂ ∂
=

∂ ∂∫  (6.19)

As per Clement (1996), this would act as an efficient filter in the lower frequency 

zone. In the present 3-D implementation it is denoted by replacing Eqn. (6.4) as, 

1 @ ,
A

dA x L A
x tA gh

ρ
ρ ∞

∂Φ ∂Φ
= =

∂ ∂∫  (6.20)

The evaluation of the dynamic pressure plays a crucial role. In usual practice, it is 

calculated based on the potentials at the previous time step. To avoid numerical 

oscillation, Grilli and Horillo (1999) proposed a moving average scheme. In the 

present study, an implicit form has been attempted. This is similar to the source and 

sink approach that is widely used in ground water flow problems (Segerlind, 1984). 
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The dynamic pressure term is written in the forward difference form and simplified as 

given below. 

1

1 ( ( ) ( ) / )
n

t dt t dt dA
x A gh
φ φ φ∂

= + −
∂ ∑  (6.21)

This is simplified to the following mixed form as, 

S M
x
φ φ∂
= −

∂
 (6.22)

where,  

1

1 1( ) ,
n

S t dA M
dtA gh dt gh

φ=− =∑  (6.23)

Here, M is analogous to the sink term and S is the known velocity potential at the 

previous time step.  

The inclusion of the above formulated mixed boundary condition has been implicitly 

coupled with the global stiffness matrix (A) and the right hand side matrix (B) as 

given below. The final FE formulation [Eqn. (6.7)] after the inclusion of the mixed 

boundary condition is, 

1 1
φ φ

∞

•

= =

⎛ ⎞
∇ ∇ = − −⎜ ⎟

⎝ ⎠
∑ ∑∫∫∫ ∫∫ ∫∫

p

m m

pi j j i j i
j jv A A

N N dv N S M dA N x t dA( ) (6.24a)

Separating known and unknown values in matrix form leads to, 

Aij Φ = Bi (6.24b)

Where, 

Aij =   [A1] + [AM]ij (6.24c)
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[A1] = 

, ,

1 , &
0 ,( )&

i j i j s
V A

s

s s

N N dV M N N dA i j A

i j j A
i A or j A i j

∞

⎧ ∇ ∇ + ∉
⎪
⎪⎪ = ∈⎨
⎪ ∈ ∈ ≠⎪
⎪⎩

∫∫∫ ∫∫
  

(6.24d)

Bi = 
( )

,

pi i
A A

i s

S N dA N x t dA

i Aφ
∞

•⎧ −⎪
⎨
⎪ ∈⎩

∫∫ ∫∫  (6.24e)

The element matrix [AM] ij for tetrahedron element is given by, 

2 1 1 0
1 2 1 0

[ ]
1 1 2 012
0 0 0 0

abc abc
M ij

MAA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

0 0 0 0
0 2 1 1

[ ]
0 1 2 112
0 1 1 2

bcd bcd
M ij

MAA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

2 0 1 1
0 0 0 0

[ ]
1 0 2 112
1 0 1 2

acd acd
M ij

MAA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

2 1 0 1
1 2 0 1

[ ]
0 0 0 012
1 1 0 2

abd abd
M ij

MAA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(6.25)

where, abcd are the local numbering of the element. The superscript in the matrix 

[AM] of the above equations represents the local numbers that lie on the boundary. 

Thus, the inclusion of the mixed boundary condition has been coupled with the global 

stiffness matrix. 

6.5.3 Damping Zone 

The inclusion of the absorbing beach is similar to the 2-D case as discussed in 

Chapter 3 by incorporating in the dynamic and kinematic free surface boundary 

conditions as, 

xDt
Dx

∂
∂

=
Φ
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Dy
Dt y

Φ∂
=
∂

 

( )Dz v x z
Dt z

Φ∂
= −
∂  

(6.26a)

1 ( )2
D g v xDt
Φ Φ Φ η Φ= ∇ ∇ − −

 

where, v(x) is a damping coefficient defined by  

3

0 beach

beach
b beach

beach

,x L L

v( x ) x ( L L ) ,L L x L
L

< −⎧
⎪⎪= ⎛ ⎞⎨ − −

− ≤ ≤⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠⎩
σ  

(6.26b)

The damping frequency (σb) is used to control the strength of the damping zone, 

while, the parameter Lbeach (beach length) is used to control the length of the damping 

zone.  

6.5.4 Mesh Stretching 

The implementation of mesh stretching has two advantages. The number of nodes in 

the damping zone has been redistributed to a larger length than required, thus one 

could increase the length of the beach without increasing the computational effort. In 

addition, FEM solution provides an underestimation of potential values in the 

damping zone due to coarser mesh adopted along the length of the beach, thus leading 

to better damping mechanism. 

The number of nodes along the length of the beach has been stretched or redistributed. 

The distance between the two successive nodes thus has been increased in the 

horizontal direction. 
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1 1i ix xΔ γΔ+ −= ,      for i = 1,2……Nb (6.27)

where 1 1i i ix x xΔ + += − , i+1 is node indices in the direction of wave propagation 

and Nb is the number of nodes along the beach length (Lbeach). If one adopts the above 

formula for the known Lbeach, then the effective beach width (Leff) can be arrived based 

on the following expression, 

1
1

bN

eff Beach
b

L L
N ( )
γ
γ
−

=
−  (6.28)

Herein, γ play a major role in the mesh stretching technique and is called as mesh 

stretching coefficient. The mesh stretching coefficient can be adopted based on the 

simulation problem. Larger coefficient leads to a larger spacing along the horizontal 

direction leading to skewed mesh and hence the mesh aspect ratio should also be 

considered. The physical interpretation of the mesh stretching technique is shown in 

Fig. 6.9. 

6.5.5 Proposed Wave Absorber for the Present Study 

For the present 3-D implementation, the piston like boundary condition is replaced 

with a mixed form and specified at the far end. This form of implicit coupling leads to 

a stable simulation. The damping frequency, σb is assumed to be equal to three times 

the input frequency and Lbeach  is assumed to be equal to one wave length. In general, 

the beach length should be of the order of damping frequency. To achieve this, the 

mesh stretching technique has been included as described in the last section. The 

mesh stretching coefficient is assumed to be 1.03. This coefficient has been arrived 

based on the extensive numerical tests for the combination of the three different 

absorption conditions. 
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6.6 REGRIDDING METHOD 

In the case of 2-D, regridding is simple to implement, whereas, for 3-D it is more 

complex, time consuming and loss of energy occurs. In the present study, a simple 

regridding procedure is adopted and the mesh stretching algorithm has also been 

considered before implementing. The first step in the regridding procedure is the 

generation of the x- and y- coordinates. This can be done by dividing the length of the 

domain (from the new wave maker position to the point before the mesh has been 

stretched) by initial number of nodes to generate x- coordinates. Similarly, y- 

coordinates are generated with equal spacing. Thus, a mesh structure is formed 

initially. The second step is to find the new vertical positions (z) and the 

corresponding velocity potential for the mesh structure. This can be evaluated using 

the TRIFIND algorithm described in the unstructured mesh and the interpolation is 

based on the shape function (3-point). 

6.7 COMPARISON WITH 2-D TANK 

In this section, the validation of the developed 3-D model has been made by 

comparing the simulated nonlinear wave with the simulation using 2-D model. The 

length of the tank for the present case is 15.1m. The wave height is 0.07m and the 

wave period is 0.8s in a water depth of 0.6m, so as to generate a steepness of 0.082. 

The comparison of the time histories at the 0.5m and 3.572m from the wave paddle 

are shown in Fig. 6.10 and Fig. 6.11. The relative errors for the above two time 

histories with respect to the 2-D simulations are 0.03 and 0.16 respectively. The wave 

profile along the length of the tank near the wave paddle is depicted in Fig. 6.12. 

Regridding has been applied after every 20 time steps. A good agreement with the 2D 
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tank simulation can be observed. A snap shot of the mesh configuration during the 

simulation is shown in Fig. 6.13. 

6.8 LONG TIME SIMULATION: WAVE ABSORBER 

6.8.1. Monochromatic Wave 

To show the efficacy of the wave absorber, the length of the tank is reduced to 6.7m 

and the simulation is carried out for a long time. The snapshots of the free surface 

profile at various time intervals are shown in Fig. 6.14. The damping zone starts at 4m 

from the wave paddle in the figure after the black line. The capability of the adopted 

methodology in dampening the steep nonlinear free surface waves can be seen. The 

comparison is made after a long time (after the reflection from the end wall) with the 

simulation carried out in the longer tank (15.1m). The time histories of free surface 

elevation near the paddle and just before the damping zone are depicted in Fig. 6.15 

and Fig. 6.16, respectively. The space profile at time before the wave starts damped 

by the combined absorber (t = 10.995s) and after the long time (t = 14.995s) are 

shown in Fig. 6.17 and Fig. 6.18.  

In order to show the efficiency of the present absorber, the absorption coefficients are 

estimated based on the numerical experiments carried out for various wave 

frequencies in the short and long tank. In the short tank, the initial distance between 

the wave paddle and the left end of the damping zone is taken as 4λ and for the long 

tank, it is taken as 12λ. The computations are carried out for 12T. 

The coefficient of absorption (Ca) is evaluated by the following expression. 
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1 1 s l
a

l

E E
C

E
−

= − −  (6.29)

where, Es is the energy in the short tank and El is the energy in the long tank. The 

energy has been evaluated from the fourier spectrum of the time history recorded at 

the location [L- (Lbeach+0.2λ)], which is just before the absorbing zone in the short 

length of the tank. For the long tank, the same location as in short tank has been 

chosen.  

The coefficient of absorption for wave steepness ranging from 0.01 to 0.082 and for 

various wave frequencies is shown in Fig. 6.19. For all the test cases, the absorption 

coefficient is found to be greater than 0.95.  

6.8.2. Bi-chromatic Wave 

In order to show the efficiency of the present methodology for the absorber, waves 

with more than one frequency components, bi-chromatic waves are simulated. 

The velocity of the wave maker is given as, 

1 1 1 2 2 2sin( ) sin( )u a t a tσ σ σ σ= +  (6.30)

where a1 and a2 are the amplitudes corresponding to the wave frequency σ1 and σ2.  

The same damping mechanism as discussed earlier is used, but one has to properly 

choose the frequency (σb) and the length (Lbeach) of the beach. In the present 

investigation, average frequency (σavg) in the domain is considered as input frequency 

(i.e, σb = 3σavg) and the average wave length is assumed to be the length of the beach. 

The simulation is carried out for short and long wave tanks and the time histories of 

free surface profile near to the paddle and before the absorber are compared. The 
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length of the short tank and long tank are 8.74m and 26.16m, respectively. The 

lengths of the tank due to mesh stretching are 11.503 and 28.75m. The wave 

amplitudes are taken as a1 = 0.016h and a2= 0.5a1 and the corresponding angular 

wave frequencies are 5.86s and 8.08s.  The free surface profile comparison before the 

absorber in the short tank is depicted in Fig. 6.20. The free surface profiles at two 

different time instants are shown in Fig. 6.21 and Fig. 6.22. The dampening efficient 

can clearly shows the capability of the proposed absorbing technique even for the bi-

chromatic waves. 

6.9 SUMMARY 

This chapter deals with the implementation of the 3-D tank. The mesh orientation 

study has been carried out for the structured mesh simulation of the nonlinear free 

surface waves. Further, the implementation of the combined mixed boundary 

condition, damping zone along with the mesh stretching strategies are incorporated in 

the present model to deal with the highly nonlinear waves. The present absorber also 

works well for the bi-chromatic waves. 
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Fig. 6.2 Nodal Configuration for Least Squares Principle 
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Fig. 6.4 Velocity Potential Contours along the Length of the 2-D Tank 

 
 
 

 
 

Fig. 6.5a Mesh Type I along with the Velocity Potential Contours in a 3-D 
Tank 
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Fig. 6.5b Velocity Potential along y/h at z/h = -0.045 [Mesh Type I] 
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Fig. 6.5c Velocity Potential across z/h for all the y/h Values [Mesh Type I] 
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Fig. 6.6a Mesh Type II along with the Velocity Potential Contours 
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Fig. 6.6 (b) Velocity Potentials along y/h at z/h = -0.045m (c) Velocity Potential 
across z/h for all y/h Values [Mesh Type II,  NY+1= 6; ------NY+1 
= 12; - . - .- NY+1 = 16;•-•-• 2-D] 
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Fig. 6.7a Mesh Type III along with the Velocity Potential Contours 
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Fig. 6.7 (b) Velocity Potentials along y/h at z/h = -0.045m (c) Velocity Potential 
across z/h for all y/h Values [Mesh Type III,  NY+1= 6; ------
NY+1 = 12; - . - .- NY+1 = 16;•-•-• 2-D] 
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Fig. 6.8a Mesh Type IV along with the Velocity Potential Contours 
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Fig. 6.8 (b) Velocity Potentials along y/h at z/h = -0.045m (c) Velocity Potential 
across z/h for all y/h Values [Mesh Type IV,  NY+1= 6; ------
NY+1 = 12; - . - .- NY+1 = 16;•-•-• 2-D] 
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Fig. 6.9 Representation of Mesh Stretching in x-z Direction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.10 Time History at 0.5m from the Wave Paddle [••• 2-D;  3-D] 
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Fig. 6.11 Time History at 3.572m from the Wave Paddle [••• 2-D;  3-D] 
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Fig. 6.12 Space Profile at Time 11.995s [••• 2-D;  3-D] 
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Fig. 6.13 Snapshot of the Mesh Configuration during the Wave 
Simulation 
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Fig. 6.14 Space – Time Profile showing the Absorption Efficiency for a Wave 
Steepness of 0.082 [Right Side of the Black Line is the Absorption 
Zone] 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 6.15 Time History at 0.5m from the Wave Paddle [------ Long Tank, 15.1m; 
Short Tank, 6.69m] 
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Fig. 6.16 Time History at 3.572m from the Wave Paddle [-------Long Tank, 
15.1m;  Short Tank, 6.69m] 
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Fig. 6.17 Wave Profile at Time 10.995s [-------- Long Tank, 15.1m;  Short 
Tank, 6.69m] 
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Fig. 6.18 Wave Profile at Time 14.995s [------- Long Tank, 15.1m;  Short 
Tank, 6.69m] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.19 Absorption Coefficient against Wave Steepness for various Wave 
Frequency [Beach Length = λ; Mesh Stretching Coefficient = 1.03] 
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Fig. 6.20 Time History before the Beach [------- Long Tank;  Short Tank] 

 
 

 
 
 
 
 
 
 
 
 

Fig. 6.21 Space Profile at 15s [------- Long Tank;  Short Tank] 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.22 Space Profile at 25s [------- Long Tank;  Short Tank] 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 SUMMARY 

The simulation of nonlinear free surface waves have been carried out using the Finite 

Element (FE) formulation of potential flow approximation based on Mixed Eulerian 

and Lagrangian (MEL) approach. Different velocity calculation methods namely, 

Global Projection Method, Least Squares Method, Mapped Finite Differences and the 

proposed Cubic Spline method have been investigated in detail to understand their 

region of applications. The computational time for all the methods are also reported. 

Extension of the FE based MEL approach using the unstructured mesh is similar to 

Arbitrary Lagrangian and Eulerian method and hence, it has been called as Semi- 

Arbitrary Lagrangian and Eulerian (Semi- ALE/SALE) method. The developed 

numerical code with various velocity calculation methods was validated with the 

experimental measurements available from the literature as well as with the 

measurements made under the present investigation. The quantitative analysis of the 

phase difference between the measurements and numerical simulation has been 

reported using wavelet transformation. The time-frequency analysis gives better 

understanding of the phase shift both qualitatively and quantitatively compared to 

Fourier analysis. The cross wavelet transformation and wavelet coherence analysis are 

used to reveal the common high power and phase lock behaviours, respectively. The 

solitary wave measurements and the comparison with the numerical simulation are 

reported along with the crest particle velocity. The three wave split-up of solitary 

waves was successfully simulated by using the present numerical model based on 

FEM for the test case of Van Daalen et al. (1997). Further, the complex wave 
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interaction problems such as wave propagation over a continental shelf, submerged 

bar, and submerged cylinder, and wave interaction with a vertical wall and surface 

piercing objects are successfully simulated. 

The numerical simulation of sloshing waves due to the individual excitation in 

horizontal and vertical directions of a container shows a good agreement with the 

numerical simulation of Frandsen (2004). An extensive investigation on the sloshing 

waves induced by different sea states has been carried out. Finally, the model is 

extended to three-dimensional tank by adopting an efficient absorber at the far end of 

the tank for long time simulation of nonlinear waves. The efficiency of the mesh 

orientation that influences the solution of the 3-D numerical wave tank has been 

discussed. 

7.2 CONCLUSIONS 

The following are the salient conclusions drawn from the present study. 

7.2.1. Simulation of Nonlinear Waves using Wave Paddle 

• The global projection method can be used efficiently when the quality of mesh has 

been taken care at every time step. While adopting regeneration of mesh using a 

simple formula, the simulation breaks down most of the time. This certainly needs 

smoothing and regridding after every 20 time steps. 

• The proposed cubic spline method holds good for both structured and unstructured 

meshes in two-dimensional tanks for the simulation of medium steep waves (upto 

H/λ = 0.045) even for the sudden startup of the wave paddle. For a high steepness 
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wave, a phase lag is noticed. This method certainly needs improvement even 

though it requires less number of nodes with less smoothing/regridding strategies. 

• Mapped finite difference and least squares method are promising velocity 

calculation approaches for the simulation of nonlinear free surface waves using 

FE. The former method holds good for the structured mesh, since transformation 

to the computational grid using unstructured grid is difficult to implement at every 

time step. The least squares method shows good results with a flexibility of 

adapting to all kinds of mesh structures. 

• The main reason for the requirement of regridding/smoothing has been attributed 

to the fact of Lagrangian motion characteristics of the nodes near the moving 

wave paddle boundary for medium to high steep waves. The regridding/ 

smoothing interval is highly depends on the wave frequency, method of velocity 

calculation and the problem in hand. 

• A quantitative comparison with laboratory measurements reveals that there is a 

positive phase shift during the steep wave simulation using cubic spline. Even 

though, the least squares approach shows a positive phase lag, the phase 

difference is found to be less compared to the former approach of simulation. 

However, the phase difference occurs not at the primary period under 

investigation, but at higher modes. The phase difference is inconsistent along the 

length of the tank, thus requiring more accurate measurements in the future 

studies. As the errors are minimal, both these approaches are quite acceptable for 

engineering applications and the numerical simulation can be successfully used as 

a replacement for physical modeling when situation demands. 



 235

• In unstructured mesh implementation, the efficacy of the spring analogies namely, 

vertex and segment methods are tested. It has been shown that both the methods 

work well provided the stiffness of the segments are appropriately handled. It has 

been suggested that for vertex method, spring stiffness has to be increased only at 

the boundary nodes, whereas, for segment spring method, the stiffness need to be 

increased to the adjacent layers. Stiffening exponentially across the depth works 

well in most of the present numerical experiments by following the physical 

behaviour of the water waves. 

7.2.2. Nonlinear Wave Propagation 

• The dispersive wave characteristics during the propagation over a submerged bar 

has been simulated using the present numerical model. The simulation result 

reveals that the model based on cubic spline does not compare well with the 

experiments for the steep waves that exists in shallow water region compared to 

method of least squares. A slight phase shift in the computation and a deeper 

trough are found to exist from the results obtained by cubic spline method.  

7.2.3. Solitary Wave Propagation and its Interaction 

• The propagation of the solitary waves over a step has been modelled which shows 

a good comparison with the experimental measurements (Seabra-Santos et al. 

1987) for three different relative obstacle height (b/h = 0.33, 0.4 and 0.5) within 

the capability of the model. It has been noticed that both in measurements and 

numerical simulation, the transmission coefficient is lower and the reflection 

coefficient is higher than the first order shallow water wave theory. It is noted that 

the reflection coefficient tends to decrease as the wave steepness increases. The 
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simulation carried out for different smooth slopes (based on sine curve) reveals 

that as the slope becomes flatter, the reflection is less compared to that for steeper 

slopes.  

• The interaction of the solitary wave with a vertical wall has also been modelled 

and the force time history shows the existence of nonlinearity in terms of double 

peaks. The reflected wave profile is in agreement with the observations made by 

Fenton and Rienecker (1982). It has been quoted that the reason for increase in 

celerity of the reflected wave profile for high steep waves is mainly due to the 

formation of trough, whereas, the reason for low steep waves is unclear. This 

phenomenon has been re-analysed in the present study with the help of continuity 

equation, showing that the wave elevation is inversely proportional to celerity and 

hence, in order to conserve the mass, the celerity increases with the decrease in 

wave elevation. 

7.2.4. Simulation of Sloshing Waves 

• Due to regular excitation in the horizontal direction, the spectral peak dominates 

at the excitation mode, when the excitation frequency is less than the first sloshing 

mode. For the excitation frequency greater than the first sloshing mode, the 

dominant spectral peak occurs at the natural sloshing frequency of the container. 

The critical sloshing motion occurs at the well known resonance condition, while 

the excitation frequency is equal to the first mode. 

• Due to regular excitation in the vertical direction, the spectral peak occurs at the 

first mode for small initial perturbation and; at first, second and two times of the 

first mode for higher initial perturbation for constant excitation amplitude. The 
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dominating spectral peaks in both the cases are at the first mode. The critical 

sloshing occurs at the parametric resonance (excitation frequency equal to twice 

the first mode). 

• For the random excitation in the horizontal direction, the spectral peaks occur only 

at the natural sloshing frequencies of the container. The dominating peaks appear 

close to ith mode, when the excitation peak frequency is at ith mode. The maximum 

sloshing is induced while the excitation peak frequency is equal to first mode, that 

is, resonance condition. 

• In the case of random excitation in the vertical direction, the dominating peak 

appears only at the first mode. The magnitude of peak is almost the same 

irrespective of the excitation peak frequency and initial perturbation, contrary to 

the regular excitation, wherein, the magnitude is large only if the excitation 

frequency is equal to twice the first mode (parametric resonance) irrespective of 

initial perturbation. 

7.2.5. 3-D Numerical Wave Tank 

• In 3-D structured mesh implementation, the linear tetrahedron elements are used. 

The mesh structure plays a major role in choosing tetrahedron elements and the 

orientation study reveals that crisscross link yields better results when compared 

to zig-zag and one side orientation of the mesh structure. 

• The combination of mixed boundary condition at the far end and damping zone 

along with mesh stretching technique is found to be efficient damping strategy 

with 93% of absorption coefficient (99.5% in terms of energy) for the worst case. 
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• Mesh stretching technique reduces the number of nodes in the domain and 

increases the length of the domain, thus minimizing the computational time and 

increasing the absorption efficiency. 

7.3 SUGGESTIONS FOR FUTURE STUDIES 

Much of the work on 2-D has been done in the past and the present study based on 

FEM shows that the velocity calculation plays a major role unlike BEM studies. 

SALE method solves the moving boundary problems like floating body but the 

acceleration has to be calculated accurately like the velocities. The vertical velocity 

estimation using backward finite difference has to be modified to have a more 

generalized code to accommodate unstructured mesh computation easily and to 

simulate over turning wave. 

Frandsen (2004) showed that the combined effect of vertical and horizontal regular 

excitations of the container lead to infinite number of additional resonant frequency 

components in sloshing waves. The magnitude of peak is almost same irrespective of 

excitation peak frequency and initial perturbation for vertical random excitation in the 

present study. This requires further investigation to examine the effect of the 

additional frequency resonance for combined random excitation. 

The development of 3-D NWT is still an active area of research (Ma, 2008) due to the 

investigation of any offshore/ coastal structures under the action of multi-directional 

waves. The present developed code for 3-D NWT forms the base work for the above 

extensions. The in-core gauss elimination solver has to be replaced by an out-of-core 

solver or iterative solvers (like Preconditioned Conjugate gradient, Bi-Conjugate 



 239

Gradient Stabilized Method, etc.) to deal with larger domains as in the case of multi-

directional waves. 



APPENDIX A 

MOVING LEAST SQUARES  

Moving Least Squares (MLS), originated by mathematicians for data fitting and 

surface construction, is often termed as local regression and loss. It can be categorized 

as a method of finite series representation of functions. The MLS approximation has 

two major features that make it more popular:  

1. The approximated field function is continuous and smooth in the entire 

problem domain. 

2. It is capable of producing an approximation with the desired order of 

consistency.  

Let φ(x) be the function of the field variable defined in the domain, Ω. The 

approximation of φ (x) at point x is denoted by φ h(x). MLS approximation first writes 

the field function in the form: 

m
h T

j j
j

(x) p (x)a (x) P (x)a(x)φ = ≡∑  (A.1)

where, m  is the number of terms of monomials (polynomial basis), and a(x) is a 

vector of coefficients given by 

T
0 1 ma (x) {a (x)a (x) .............a (x)}=  (A.2)

Which are functions of x. 

In Eqn. (A.1), P(x) is a vector basis functions that consists of the monomials of the 

lowest orders to ensure minimum completeness. In 2-D, it is taken as, (based on 

pascal triangle as in choosing FEM basis function) 
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PT(x) = {1, x, y, xy, x2, y2,……., xm, ym} (A.3)

The vector coefficients a(x) in Eqn. A.1 is determined using the function values at a 

set of nodes that are included in the support domain of x. A support domain of a point 

x determines the number of nodes that are used locally to approximate the function 

value at x. 

Given a set of n nodal values for the field function φ1, φ2, φ3…. φn  at n nodes x1, x2 ….., 

xn that are in the support domain, then the Eqn. (A.1) can be used to calculate the 

approximated values of the field function at these nodes: 

φ h(x, xI) = P T(xI) a(x),               I = 1,2,…..n (A.4)

In which a(x) here is an arbitrary function of x. A functional of weighted residual is 

constructed using the approximated values of the field function and the nodal 

parameters, φI = φ (xI), 

n 2h
I I

I
n 2T

I I I
I

J W(x x ) (x,x ) (x)

W(x x ) P (x )a(x)

⎡ ⎤= − φ − φ⎣ ⎦

⎡ ⎤= − − φ⎣ ⎦

∑

∑
 

(A.5)

Where IW(x x )−  is a weight function, and φI is the nodal parameter of the field 

variable at node I. 

The weight function in this context is different from the finite element weight 

function. The reader can refer Liu (2002) for further details. 

At an arbitrary point x, a(x) has been choosen to minimize the weighted residuals. 

The minimization condition requires, 
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J 0
a
∂

=
∂

 (A.6)

which results in the set of linear equations, and can be written in the matrix form as, 

A(x) a(x) = B(x) φs (A.7)

Where A is called the weighted moment matrix, 

n
T

I I I
I

A(x) W (x)P(x )P (x )=∑                 where  I IW (r) W(x x )= −  (A.8)

Matrix B is, 

B (x) = [B1, B2,…., Bn] (A.9)

BI =  I IW (r)P(x )  (A.10)

And φs is the nodal parameters of the field variables for all the nodes in the support 

domain 

φs = {φ1, φ2, φ3…….φn}T (A.11)

Solving the Eq. A.7 for a(x), leads to, 

a(x) = A-1(x)B(x) φs (A.12)

Substituting the above equation back into Eq. A.5 leads to 

( )
n m

h 1
j IjI

I j
(x) p (x) A (x)B(x)−φ = φ∑∑  (A.13)

i.e., 
n

h
I I

I

(x) (x)φ = ℜ φ∑  (A.14)

Where the MLS shape function ℜI (x) is defined by 

( )
m

1 T 1
I j IjI

j

(x) p (x) A (x)B(x) P A B− −ℜ = =∑  (A.15)
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Note that m is the number of terms of polynomial basis p(x), which is usually much 

smaller than n, which is the number of nodes in the support domain for constructing 

the shape function. The requirement of n >> m prevents the singularity of the 

weighted moment matrix, so that A-1
 exist.  

In the present application, the weight function IW (r)  is taken as a quartic spline 

function as, 

2 3

2 3

2 14r 4r for r
3 2
4 4 1W(r) 4r 4r r for r 1
3 3 2
0 for r 1

⎧ − + ≤⎪
⎪
⎪= − + − < ≤⎨
⎪

>⎪
⎪⎩

 

(A.16)

 



APPENDIX B 

ANALYTICAL SOLUTION FOR FREE SLOSHING 

The derivation for the second order analytical solution for a rectangular container 

having an initial free surface has been reported in this appendix. Let us consider the 2-

D tank of length, L and water depth h , the origin of the tank is at the top left corner of 

the free surface. The governing equation and the corresponding boundary condition 

for a first order potential theory is given as,  

∇2φ = 0 (B.1)

2

2 0 0g z
t z
φ φ∂ ∂
+ = =

∂ ∂
 (B.2)

0 z h
z
φ∂
= =−

∂
 (B.3)

0 0x or x L
x
φ∂
= = =

∂
 (B.4)

The initial condition is given by, 

φ (x, z = 0, t = 0) = ϕ(x) 

( ) ( )1

0 0

0
z ,t

x,t x
g t
φη ζ

= =

∂
= =− =

∂
 (B.5)

One can easily write the solution for the above set of equations in the series form as, 

( ) ( )
0

n
n n

n n

cosh k z h
F t cos k x

cosh k h
φ

∞

=

+
= ∑  (B.6)

where,  kn = nπ/L. From Eqn. (B.2), one could define, 

( )n n n n nF t A cos t B sin tσ σ= +  (B.7)

Where, ( )n n nk g tanh k hσ =  (B.8)
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Substituting, Eqns. (B.6) and (B.7) into (B.5), 

( )

( )

0

0

2

2

L

n n

L

n n
n

A x cos k x dx
L

gB x cos k x dx
L

ϕ

ζ
σ

=

=−

∫

∫
 (B.9)

Assuming the initial condition as, 

ϕ (x) = 0 and ζ (x) = a cos (2πx/L) (B.10)

Eqn. (B.9) becomes, 

An = 0,    B2 = - ag/σ2 and Bn = 0 (B.11)

Finally, this leads to 

( )2
1 2 2

2 2

cosh k z hag sin t cos k x
cosh k h

φ σ
σ

+
=−  (B.12)

η1(x,t) = a cos σ2t cos k2x (B.13)

Considering the Stokes perturbation expansion of velocity potential, one could derive 

the second order analytical expression also. The free surface boundary condition will 

be written as, 

( )
2 2

22 2 1 1
1 12 2 0g g z

t z z t z t
φ φ φ φη φ

⎛ ⎞∂ ∂ ∂ ∂∂ ∂
+ =− + − ∇ =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (B.14)

( )
2

22 1
2 1 1

1 1
2g t y t

φ φη η φ
⎡ ⎤∂ ∂

=− + + ∇⎢ ⎥∂ ∂ ∂⎣ ⎦
 (B.15)

The initial condition is, 

φ2 (x, z = 0, t = 0) = 0 

η2 (x, t = 0) = 0 
(B.16)

Using the solution of φ1 and η1, one could obtained the following Eqns., 
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( )
2 2

4 2 2 4 2 22 2
2 2 2 2 2 22

2

1 2 3 3 2 0
4

ag sin t k g k g cos k x z
t z
φ φ σ σ σ

σ
∂ ∂ ⎡ ⎤+ =− + + − =⎣ ⎦∂ ∂

 (B.17)

( )21
2 2

2

cosh k z h
ag cos t cos k x

t cosh k h
φ σ

+∂
=−

∂
 (B.18)

( )2
21

2 2 2
2

sinh k z h
agk cos k x cos t

z t cosh k h
φ σ

+∂
=−

∂ ∂
 (B.19)

2
2 2 2 21

1 2 2 2a cos k x cos t
z t
φη σ σ∂
=−

∂ ∂
 (B.20)

2 2
2 2 2 2 2 2

2 2 2 2 22 2 2
2

1 1
2 2

ga sin t k sin k x cos k x
x z
φ φ σ σ

σ
⎡ ⎤⎡ ⎤∂ ∂

+ = +⎢ ⎥⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦
 (B.21)

Second order velocity potential after simplification using the initial condition is given 

by, 

( )

( ) ( ) ( )

( ) ( )

2
4 2 2

2 2 2 23
2

2 2
24 2 2 2 2 4

2 2 2 2 2 23 2
2 2 2

2
42 2 4

2 2 4 42
4 2 4

1 3 2
16

21 12 2
16 2 8

1 3
8

a k g sin t

cosh k z ha ak g cos k x sin t k g t
cosh k h

cosh k z ha k g sin t cos k x
cosh k h

φ σ σ
σ

σ σ σ
σ σ

σ σ
σ σ

= +

+
+ − − −

+
+ +

 

(B.22)

The second order velocity potential derivative w.r.t. t is given by, 

( ) ( ) ( )
( )

4 2 2 4 2 2 2 2 42 2 2 2 2 2 2 2 2 22
2 2 2 4
2 2 2 4 4

3 2 2 21
8 3

k g cos t k g cos k xcos t k ga
t k g cos t cos k x

σ σ σ σ σφ
σ σ σ

⎡ ⎤+ + − − −∂ ⎢ ⎥=
∂ ⎢ ⎥+ +⎣ ⎦

 
(B.23)

Second order wave elevation can be obtained from Eqn. (B.15). Which is simplified 

as, 

[ ]2
1 23 20 21Eqn B. B. B.
g

η =− + +  

Substituting Eqn. (B.23), Eqn. (B.20) and Eqn. (B.21) in the above equation leads to 

the following expression, 
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( ) ( )

( ) ( )

2 2
2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 22
2

2 2
4 2 2 4 2 2
2 2 2 2 2 2 22 2

2 2

2 2
4 2 2 4 2 2
2 2 2 2 4 42 2

2 2

1
2

3 2 2 2
8 8

3
8 8

a ga cos k x cos t sin t k sin k x cos k x
g

a ak g cos t k g cos t cos k x

a ak g k g cos t cos k x

η σ σ σ σ
σ

σ σ σ σ
σ σ

σ σ σ
σ σ

⎡ ⎛ ⎞
=− − + +⎢ ⎜ ⎟

⎝ ⎠⎣

+ + + −

⎤
− − + + + ⎥

⎦

 

 

 

 

(B.24)

If one need to find the time history at the center of the container, the above equations 

simplifies to the following by plugging in x = -L/2. [as reported in Wu and Eatock 

Taylor, 1994] 

( ) ( )

( ) ( )

2 2
4 4 4

2 2 2 2 2 22 2
2 2

2 2
4 2 2 4 2 2
2 2 2 2 42 2

2 2

1 2 6 2 4 2
8 8

3
8 8

a acos t cos t
g

a ak g k g cos t

η σ σ σ σ σ
σ σ

σ σ σ
σ σ

⎡
=− + +⎢

⎣
⎤

− − + + + ⎥
⎦

 
 

 

(B.25)

Eqn. (B.22) and Eqn. (B.24) has been used in Chapter 4, Section 4.2.2 to find out the 

second order energy [E2(t)]. 



APPENDIX C 

SOLITARY AND CNOIDAL WAVE SIMULATION  

C.1 SOLITARY WAVE 

The simulation of solitary waves by prescribing the ‘piston’ type wave paddle motion 

is determined from the first order Boussinesq wave theory used by Goring (1979). 

The velocity of the wave paddle is given by, 

2

1

cosh ( )
p

cHx Hh t
h

χ
=

+
 

(C.1)

and the paddle displacement is  

( ) [tanh ( ) tanh ]p
H kx t t
k h

χ λ= +  (C.2)

where, 

( ) ( ( ) )p
kt ct x t
h

χ λ= − −  (C.3)

and 

3 / 4 , ( )k H h c g h H= = +  

The implicit Eqn. (C.2) is solved using the Newton –Rapson method. For the 

truncation of the initial motion [λ in Eqn.(C.2)], Grilli and Svendsen (1990) suggested 

a small truncation parameter namely, εz = 0.002, which is a function of 

0.5

41 log
2

z

zk
ελ

ε
⎡ ⎤−
⎢ ⎥
⎣ ⎦

, thus giving an approximate value of 3.80/k. This analytical 

formulation is given in both the experimental work carried out at University of 

Wuppertal, Germany and in all the present numerical modelling. Whereas, the solitary 
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wave measurements carried out at IITMadras, India is governed by the built-in 

functions of the DHI wave synthesizer. 

C.2 CNOIDAL WAVE 

The simulation of Cnoidal wave in the experiments carried out at University of 

Hannover, Germany is based on the First order Cnoidal wave theory. The paddle 

displacements are established by the transfer functions of the wave maker, by giving 

the input wave elevations. As it is well known, that the first order surface elevation of 

the Cnoidal wave theory is based on the implicit equations (Goring, 1979). An Adhoc 

trial and error method scheme is used to solve the equations. The code is written in 

MATLAB. The source code is given below for future references. 
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% Cnoidal.m 
% 
% % E-Mailed in coastal_list on 22nd Feb.2007 
% Modified to obtained the time series at the wave paddle on 27th August'07 
% ------------------------------------------ 
% This Program will generate the modulus of elliptic integrals for a Cnoidal wave 
% with wave-height,wave-period and water depth as input using  
% AGM for 3 significant figures  
 
% Reference: 
% Goring, D.G., 1978. Tsunamis—the propagation of long waves onto a shelf,  
% Ph.D. thesis, Univ. of California, Berkley. 
% Note: Eq.(A.4) in the above said reference is wrong. 
% for computation of K and E use k =sqrt(m)= sqrt(1-m')  
%********************************* 
% default the program gives the result at x = 0, if you want u  
% can modify for space also. 
clear 
clc 
H= input('Enter the value of wave-height: '); 
d= input('Enter the value of water depth: ');  
T= input('Enter the value of time-period: '); 
% NW = input('Enter the number of data points in a waves: '); 
% %dt = input('Enter the value of time step: '); 
% AW = input('Enter the number of waves: '); 
% ramp = input('Enter the ramp for data points:'); 
% filename=input('enter the filename:'); %'rw070960.dat'    
dt = 0.01; 
%N = 60; 
%dt = T/NW; 
% N = NW*AW; 
endt = input('End of simulation time: '); 
g = 9.806; 
%first step is computing 'j'  
j=0; 
while (1) 
m= 10^-j; 
n= 10^-(j+1); 
[K1,E1]=ellipke((1-m)^.5);  
[K2,E2]=ellipke((1-n)^.5); 
T1= ((4/1.732)*(d^1.5)*K1*(1-m))/((9.8*H*((1-m)*d+H*(2-(1-m)-3*(E1/K1))))^.5); 
T2= ((4/1.732)*(d^1.5)*K2*(1-n))/(( 9.8*H*((1-n)*d+H*(2-(1-n)-3*(E2/K2))))^.5); 
if ((T-T1)*(T-T2)<0) 
   break     
else 
    j=j+1; 
end 
end 
%j 
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% second step involves computing 'k1'(here p) 
p=1; 
while (1) 
a= p*(10^-(j+1));  
b=(p+1)*(10^-(j+1)); 
[K1,E1]=ellipke((1-a)^.5); 
[K2,E2]=ellipke((1-b)^.5); 
T1= ((4/1.732)*(d^1.5)*K1*(1-a))/((9.8*H*((1-a)*d+H*(2-(1-a)-3*(E1/K1))))^.5); 
T2= ((4/1.732)*(d^1.5)*K2*(1-b))/((9.8*H*((1-b)*d+H*(2-(1-b)-3*(E2/K2))))^.5);  
if ((T-T1)*(T-T2)<0) 
   break 
else 
    p=p+1; 
end 
end 
%p 
%third step involves computing k2(here its q) 
q=1; 
while (1) 
 
    a= (p+q*.1)*(10^-(j+1)); 
    b=(p+(q+1)*.1)*(10^-(j+1)); 
    [K1,E1]=ellipke((1-a)^.5); 
    [K2,E2]=ellipke((1-b)^.5); 
T1= ((4/1.732)*(d^1.5)*K1*(1-a))/((9.8*H*((1-a)*d+H*(2-(1-a)-3*(E1/K1))))^.5); 
T2= ((4/1.732)*(d^1.5)*K2*(1-b))/((9.8*H*((1-b)*d+H*(2-(1-b)-3*(E2/K2))))^.5); 
if ((T-T1)*(T-T2)<0) 
   break 
else 
    q=q+1; 
end 
end 
%q 
 
%fourth step involves computing k3(here its r) 
r=1; 
while (1) 
 
    a= (p+q*.1+r*.01)*(10^-(j+1)); 
    b=(p+q*.1+(r+1)*.01)*(10^-(j+1)); 
    [K1,E1]=ellipke((1-a)^.5); 
    [K2,E2]=ellipke((1-b)^.5); 
T1= ((4/1.732)*(d^1.5)*K1*(1-a))/((9.8*H*((1-a)*d+H*(2-(1-a)-3*(E1/K1))))^.5);  
T2= ((4/1.732)*(d^1.5)*K2*(1-b))/((9.8*H*((1-b)*d+H*(2-(1-b)-3*(E2/K2))))^.5); 
if ((T-T1)*(T-T2)<0) 
   break 
else 
    r=r+1; 
end 
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end 
%r 
s= (p+q*.1+r*.01)*10^-(j+1); % s = m' 
disp('Modulus of the elliptic functions(k) is') 
%disp(s) 
sr = sqrt(1-s); %sr is nothing but m=k^2=(1-m') for computing use k' 
disp(sr) 
[K,E]= ellipke(sr);  
L = sqrt(g*d*T^2*(1+((H/(d*sr^2))*(2-sr^2-3*E/K)))); 
disp('Wave length is '); 
disp(L); 
disp('ursell parameter'); 
disp(H*L^2/d^3); 
%L1 = sqrt(16*d^3/(3*H))*K*sr; 
yt = ((H*(K-E))/(K*(sr^2)))+(d-H); 
%x = 0:0.01:30; 
x = 0; 
% for it=1:N; 
% t(it)=(it-1)*dt; 
% end; 
t= 0:dt:endt; 
eta(1:length(t)) = 0; 
for i= 1:1:length(t)  
U= (2*K*((x/L)-(t(i)/T))); 
[SN,CN,DN]  =  ellipj(U,sr); 
eta(i)=yt-d+ (H*(CN^2)); 
end 
plot(t,eta) 



APPENDIX D 

WAVELET TRANSFORMATION  

D.1 GENERAL 

Fourier Transform (FT) is an important tool for the analysis and processing of many 

time varying signals. FT has certain limitations to characterize non-stationary signals. 

Though a time varying, overlapping window based FT known as Short-Time FT 

(STFT) is capable of processing the non-stationary signals, the selection of size and 

shape (rectangular, Gaussian and elliptic) of the window function is highly difficult, 

as it significantly affect the spectral resolutions. For example, a narrow window 

would give better time resolution, whereas, a wider one yield could result in a better 

frequency resolution. In addition, the window size and shape could not be changed 

during analysis, once selected the resolution is also set. Thus, analysis of time series 

through STFT is completely dictated by the selection of window function. Hence, its 

application on the analysis of the non-stationary and signals with sharp changes in its 

spectral characteristics along the time scale is highly questionable. The 

aforementioned drawbacks could well be overcome by the use of a window function 

of varying length or width. Such an analysis function would certainly be useful for 

analysis of signals with slowly varying characteristics with occasional sudden bursts. 

Wavelets are analysis mathematical functions that solve the above said problems. In 

this appendix, a brief overview about Wavelet is given. The description about 

Wavelets are given by Weng and Lau (1995), Torrence and Compo (1997) and the 

theoretical background of wavelet analysis are described in Daubechies (1990). This 

is a suitable tool for the analysis of the transient, non-stationary or time-varying 

phenomena.  In the context of ocean Engineering, the wavelet transform has been 
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successfully used in the dispersion of ocean waves by Meyers et al. (1993), wave 

growth and breaking by Liu (1994) and more recently by Balaji et al. (2007) on the 

prediction of the ocean waves using data buoy. Wavelets are similar to but an 

extension of Fourier analysis and computational wise the wavelet transformation are 

similar to the fast fourier transformation and hence its an alternative to classical 

windowed fourier transformation. The major difference when compared to the 

windowed fourier transformation is that the window in wavelet is already oscillating 

and is called mother wavelet, which are not multiplied by sine or cosine functions.  

D.2 DEFINITION OF WAVELET 

A ‘wavelet’ is a small wave which has its energy concentrated in time. It has an 

oscillating wave characteristic but also has the ability to allow simultaneous time and 

frequency analysis which is a suitable tool for the analysis of the transient, non-

stationary or time-varying phenomena. In order a function to be called a wavelet, it 

must satisfy the following conditions. 

(1) The wavelet must have zero mean. This condition, known as the admissibility 

condition, ensures the invertibility of the wavelet transform. Thus, the original signal 

can be obtained from the wavelet coefficients through the inverse transform.  

(2) The integral of the wavelet function, usually denoted by ψ, must be zero. 

(t)dt 0
∞

−∞
ψ =∫

        (D.1) 

This assures that the wavelet function has a wave shape and is known as the 

admissibility condition.  
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(3) The wavelet function must have unitary energy, i.e., 

2(t) dt 1
∞

−∞
ψ =∫

       (D.2) 

This assures that the wavelet function has compact support or has a fast amplitude 

decay enabling physical domain localization. 

These wavelets split up a time varying data into different frequency components, and 

then study each component with a resolution matched to its scale. They have 

advantages over traditional Fourier methods of analyzing physical situations, where, 

the signal contains discontinuities and sharp spikes. The basic difference between 

waves and wavelets is that waves are smooth, predictable and everlasting, whereas, 

wavelets are of limited duration, irregular and may be asymmetric. Waves are used as 

deterministic basis functions in FT for the expansion of signals, which are time-

invariant, or stationary. The important characteristic of wavelets is that they can serve 

as deterministic or non-deterministic basis for generation and analysis of the most 

natural signals to provide better time-frequency representation, which is not possible 

with waves using conventional FT.  

D.3 MOTHER WAVELET  

The wavelet analysis procedure is to adopt a wavelet prototype function, called an 

‘analysing wavelet’ or ‘mother wavelet’. Temporal analysis is performed with a 

contracted, high frequency version of the prototype wavelet, while, frequency analysis 

is performed with a dilated, low frequency version of the same wavelet. In simple 

terms, the kernel functions used in the transformations are obtained by scaling and 

translating the prototype function. The kernels are obtained as, 
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*
,

1 t(t)ϒ τ
− τ⎛ ⎞ψ = ψ⎜ ⎟ϒϒ ⎝ ⎠

 (D.3)

In which, ϒ  is the scaling factor and τ is the translating or shifting factor and 1/ ϒ  

is the normalization factor to ensure that all wavelets have the same energy.  

Among the few mother wavelets, such as the orthogonal wavelets, Paul’s wavelet or 

DOG wavelet (derivative of a Gaussian), the Morlet wavelet is widely adopted for 

oceanographic applications. The Morlet wavelet function is a Gaussian modulated 

complex-valued plane wave and hence, for the transformation of ocean wave signals, 

it is widely adopted. The Morlet wavelet function is defined as, 

2
oi t(1/ 4) (t / 2)(t) e eω− −ψ =π  (D.4)

Where, ωo is the non-dimensional frequency, which is taken as 6.0 in the present 

study for satisfying the admissibility conditions (Farge, 1992). Typical Morlet real 

and imaginary parts are shown in Fig. D.1.   

 
 

Fig. D.1 The Morlet Wavelet 
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Using the above basis function, the time histories were multiplied by ψ*, in which the 

parameters ϒ  and τ are continuously varying, thus leading to a two-dimensional 

representation of the one-dimensional signal. For the Morlet wavelet with ωo of 6.0, 

the Fourier period (or inverse of frequency) corresponding to the wavelet scale is 

1.03a (Torrence and Compo, 1998). 

D.4 CONTINUOUS WAVELET TRANSFORMATIONS  

The Continuous Wavelet Transformation [CWT, Wx( ϒ ,τ)] of a one-dimensional 

signal x(t) is given as, 

x
1 tW ( , ) x(t) dt

∞ ∗

−∞

− τ⎛ ⎞ϒ τ = ⋅ψ∫ ⎜ ⎟ϒ⎝ ⎠ϒ
 (D.5)

in which, ψ* is scaled and translated version of basis function, ψ, given in Eqn. (D.3). 

The variation of the size of the analysis function with respect to the time and 

frequency for the CWT is shown in Fig. D.2. 

 
 
 

Fig. D.2 Size and Shape of the Analyzing Function  
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The data x(t) is bounded in time so the wavelet transform is affected by edge effects, 

this effect has been called as the Cone of Influence (COI) by Torrence and Compo 

(1998). Statistical significance was also estimated against a red noise model as 

proposed by them.  

D.4 CROSS WAVELET TRANSFORM (XWT) 

The analysis of the covariance of the two time series has been carried out using the 

cross wavelet transformation. The cross wavelet transform of the two time series X(t) 

and Y(t) with wavelet transform Wx and Wy is defined as, 

Wxy( ϒ ,t) = Wx( ϒ ,t) W*y( ϒ ,t) (D.6)

Where, the asterisk denotes complex conjugate. The phase angle of Wxy describes the 

phase relationship between X and Y, Whereas, the power is obtained from abs(Wxy) in 

the time-frequency space. The main interest is the phase difference between the 

components of the two time series, the mean and confidence interval of the phase 

difference were estimated. The circular mean of a set of angles within the 5% 

statistical significant region (or 95% confidence) is estimated following Zar (1999). 

Whereas, the confidence interval is difficult to interpret, hence it is find out using the 

circular standard deviation reported in Grinsted et al. (2004). 

D.5 THE WAVELET COHERENCE (WTC) 

This is an estimation of the intensity of the covariance of the two given time series in 

time-frequency space, unlike the XWT power, which is the estimation of common 

powers. Coherence has been defined as (Torrence and Webster, 1999), 
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Where S is a smoothing operator, defined as, S(W) = Sscale(Stime(W(ϒ ,t)). The scales 

in time and frequency over which S is smoothing define the scales at which the 

coherence measures the covariance. Torrence and Webster (1998) reported the natural 

way to design the smoothing operator for the Morlet wavelet. The coherence 

significant levels was estimated using Monte Carlo methods with red noise to 

determine the 5% statistical significance level (Grinsted et al. 2004).  The circular 

mean as well as the confidence interval are calculated similar to XWT. The reason for 

the difference between the phase angles reported for the cross wavelet and coherence 

methods is because of the smoothing operator used in Coherence method. 
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